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Choice of Covariance Functions

@ There are certain realistic assumptions often employed on the
covariance function Co(t;, t;).

e Stationary: Co(t;, tj) = Co(t; — t;); Isotropic:

Co(ti, t7) = Co(llti — ).

@ The covariance function of a stationary process can be
represented as the Fourier transform of a positive finite
measure.

@ This is the famous Bochner's theorem.

o Let h=t; — t;, A real-valued function Cg(h) on RP is the
covariance function of a stationary real valued random process
on RP if and only if it can be represented as

Co(h) = / cos(2h.s)dH(s),

where H(s) is a positive finite measure.
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Choice of Covariance Functions

o If H(s) has a density S(s), then S(s) is called the spectral
density.
e Note that Cg and S(s) are Fourier-dual of each other, i.e.

Co(h) = / cos(27h.5)dS(s)ds, S(s) = / cos(—27h.s) Co(h)dh.

@ Most of the practical applications we take the covariance
kernel as an isotropic kernel.

r2

e Squared Exponential Covariance: Cy(r) = exp (_3>'
@ The spectral density is given by

S(s) = (V27 $)P exp(—27m2¢s?).
@ The sample path is infinitely differentiable.

@ This is the most popularly used covariance kernel in the
machine learning literature.
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Choice of Covariance Functions

@ Matern Covariance:

Colr) = 2 <@’> K, <@r> ,

rwv) \ ¢ ¢

K, is the modified Bessel function.
@ The spectral density is

@ Here v is called the smoothness parameter which determines
the smoothness of the sample path.

@ As v is increased, the sample paths are more smooth.

@ As v — oo, Matern covarinace kernel converges to the
squared exponential covariance kernel.

o If k is the greatest integer less than v, then the Gaussian
process is k times mean square differentiable.
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Choice of Covariance Functions

e Exponential Covariance:

Co(r) = exp <—2r¢> :

@ This is a special case of the Matern covariance kernel with
v=1/2.

@ The sample patha is only continuous, not even differentiable
once.

@ In the one dimensional case this is the covariance function of
the Ornstein-Uhlenbeck (OU) process.

@ The OU process [Uhlenbeck process and Ornstein, 1930] was
introduced as a mathematical model of the velocity of a
particle undergoing Brownian motion.

@ Gaussian process with the exponential kernel is not even once
mean square differentiable.
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Choice of Covariance Functions

Rational Quadratic Covariance:

a-(1r 2)

This is a scale mixture of squared exponential kernel.

(]

Sometimes used for a greater flexibility over squared
exponential.

@ The Gaussian process is infinitely mean squared differentiable
for every a.

@ As o — o0, the rational quadratic function takes more and
more the shape of a squared exponential covariance function.
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Constructing More Complicated Covariance Functions

@ Rather than using an isotropic function, one may want to use
stationary covariance function.

o Define the distance metric r(t;, t;)? = (t; — t;) M(t; — t;), M
is a positive definite matrix.

@ Now replace any of the already defined covariance kernels by
Co(ti — tj) = Co(r(ti, 17)).

@ Some non-stationary covariance functions are used in some
applications.

@ For example, dot product covariance function

Cg(t,', tj) =02 + tj.t;

@ Neural network covariance function is used sometimes.

2 2t% t;
Cg(i‘,‘, l'j) = *Sii’li1 = i J ——
77 \/(1+2t;2t,-)(1+2t;2tj)

where t; = (1, t;).
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Model and Gaussian process prior

The non-linear relationship between y and x is given by

y="1f(x)+e e~ N(O,Tz)

Need prior distributions on {f(-),72}.

f(-) is assigned a Gaussian process prior distribution

GP(:Ua C@('7 ))

@ Lets demonstrate everything with the exponential covariance
function. Let 8 = (02, ¢),

Coz o(tis tj) = o2 exp(—|[ti — ;[ /9) |
@ Note that this is going to create sample paths which are only

continuous and not even once differentiable while the function
f(cdot) may be more smooth.
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Prior

One may use Matern covariance kernel with a prior on the
smoothness parameter v.

@ It was not possible to learn v.
@ Thus it is a common practice to assign the prior distribution
with fixing v.

For exponential kernel we are fixing v = 2.
Prior on o2 and 72 are assigned inverse-gamma(a,b) prior.
A Normal prior on p.

We need to be careful in assigning prior on ¢.
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Model Fitting

@ Suppose we have the data (y1,x1), ..., (Vn, Xn)-
e Thus y; = f(x;) + i, € ~ N(0,72).

@ Suppose y = (y1,-.-,¥n), € = (€1, ..., €n)" and
f=(f(x1),...,f(xn)).

Thus y = f + €, € ~ N(0,721).

From the Gaussian process specification, a priori
f ~ N(,U,].n, CO'2,¢)'
The posterior distribution

p(¢, 0%, 11, 7°ly) o< N(y|pln, Coa g+ 721) X N(pil iy, o7)
x 1G(72|a, b) x 1G(c?|a, b) x p(¢).
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Model Fitting

Model fitting proceeds through MCMC steps. We run Gibbs within

Metropolis.
@ y|— follows a normal distribution.
e 02,72, ¢ are updated using Metropolis steps.

@ In spatial statistics, one uses the classical geostatistical
Gaussian process model

y(s) = x(s) B+ f(s) + €(s), e(s) ~ N(O, 7-2).

°y (¥(s1); -+ ¥(sn))'s X = [x(s1) = - : x(s1)]',
= (f(s1), - f(sn))".

o Let C027¢ = ((Ca2,¢(5iv Sj)))ﬂj:l

y=XB+f+e e~ NO,7I).
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Posterior distribution of the function

@ Note that
p(Fly) o< N(y|f,7°1) x N(F|pul,, C,2 )

@ Thus f|y,— is a multivariate normal distribution.

e For {,u(’),az(’),Tz(’),(ﬁ(’)},L:l L post burn-in MCMC samples,
we draw F ... f() | MCMC samples of the posterior
realization of the function at n data points.

@ For inference at an arbitrary point x, we calculate the
distribution of f(x)|y.

x)ly) = /[p X)|F(x1), s F(Xn), 02,72, 6, 1)
(Xl) (Xn)’O' T a¢7:uw ) (027727¢7/f“y)]'

@ We already know how to draw samples from
p(f(x1), .., F(xn)|o?, 72,6, 11, ¥) and p(0?, 72, ¢, ply).
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Posterior distribution of the function

o f(X)‘f(Xl), ooy f(xn)30-277—27¢>:u ~ N(Mf,O’%)-

Uf2' — CU2’¢(x,x) — C027¢(X)/C;217¢CU2’¢(X).
/’Lf = l,L + C0.27¢(X)IC;217¢(f - lu’]'n)
€o2,(X) = (Coa (X, X1), -, Coa (. X))

@ For spatial process models, finding posterior distribution of
the function is also similar.
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Suppose the prediction of response is required at x.
Note that, y ~ N(f(x),72).

We have already seen how to draw post burn-in samples
F(x)D, ..., F(x)D from £(x)|y1, ..., Yn.

Posterior predictive samples y() ... y(1) are drawn from
y) ~ N(f(x)(/)77-2(/))_

In sample prediction can be similarly performed.
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Multivariate Gaussian Process model

@ Multivariate Gaussian process models are most often used in
the geostatistical analysis.

o Let y(s) = (yi(s), ..., ¥m(s)), w(s) = (wa(s), ..., wm(s))’,
€(s) = (e1(s), .-, em(s))’.

@ The multivariate model is given by
y(s) = Bx(s) + w(s) + €(s),
((5/1)),11 10 €(s) ~ N(0, w).

@ When data observed at sq, ..., Sp,
y = vec(BX) + w + €,

w = (w(s1),....,w(s,)), € =(e(s1),....,e(sn)"),
= [x(s1) : -+ : x(sn)].
o e~ NO,I3W).
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Modeling Multivariate Gaussian Process

e Linear Model Coregionalization: w(s) = Av(s), where
v(s) = (vi(s), ..., vim(s))’, Ais an m x m matrix.

o Is A identifiable?

@ Popular specification is A is a lower triangular matrix with
diagonal entries all positive.

@ vi(S),..., Vm(s) are assigned independent Gaussian process.

o Multivariate Matern Kernel: Specification of Matern kernel
for the multivariate Gaussian process so that marginally each

component follows a Gaussian process with a univariate
Matern kernel.
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