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Choice of Covariance Functions

There are certain realistic assumptions often employed on the
covariance function Cθ(ti , tj).

Stationary: Cθ(ti , tj) = Cθ(ti − tj); Isotropic:
Cθ(ti , tj) = Cθ(||ti − tj ||).

The covariance function of a stationary process can be
represented as the Fourier transform of a positive finite
measure.

This is the famous Bochner’s theorem.

Let h = ti − tj , A real-valued function Cθ(h) on RD is the
covariance function of a stationary real valued random process
on RD if and only if it can be represented as

Cθ(h) =

∫
cos(2πh.s)dH(s),

where H(s) is a positive finite measure.
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Choice of Covariance Functions

If H(s) has a density S(s), then S(s) is called the spectral
density.

Note that Cθ and S(s) are Fourier-dual of each other, i.e.

Cθ(h) =

∫
cos(2πh.s)dS(s)ds, S(s) =

∫
cos(−2πh.s)Cθ(h)dh.

Most of the practical applications we take the covariance
kernel as an isotropic kernel.

Squared Exponential Covariance: Cθ(r) = exp
(
− r2

φ

)
.

The spectral density is given by
S(s) = (

√
2πφ)D exp(−2π2φs2).

The sample path is infinitely differentiable.

This is the most popularly used covariance kernel in the
machine learning literature.
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Choice of Covariance Functions

Matern Covariance:

Cθ(r) =
21−ν

Γ(ν)

(√
2νr

φ

)
Kν

(√
2νr

φ

)
,

Kν is the modified Bessel function.

The spectral density is

Here ν is called the smoothness parameter which determines
the smoothness of the sample path.

As ν is increased, the sample paths are more smooth.

As ν →∞, Matern covarinace kernel converges to the
squared exponential covariance kernel.

If k is the greatest integer less than ν, then the Gaussian
process is k times mean square differentiable.
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Choice of Covariance Functions

Exponential Covariance:

Cθ(r) = exp

(
− r

2φ

)
.

This is a special case of the Matern covariance kernel with
ν = 1/2.

The sample patha is only continuous, not even differentiable
once.

In the one dimensional case this is the covariance function of
the Ornstein-Uhlenbeck (OU) process.

The OU process [Uhlenbeck process and Ornstein, 1930] was
introduced as a mathematical model of the velocity of a
particle undergoing Brownian motion.

Gaussian process with the exponential kernel is not even once
mean square differentiable.
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Choice of Covariance Functions

Rational Quadratic Covariance:

Cθ(r) =

(
1 +

r2

2αφ

)−α
This is a scale mixture of squared exponential kernel.

Sometimes used for a greater flexibility over squared
exponential.

The Gaussian process is infinitely mean squared differentiable
for every α.

As α→∞, the rational quadratic function takes more and
more the shape of a squared exponential covariance function.
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Constructing More Complicated Covariance Functions

Rather than using an isotropic function, one may want to use
stationary covariance function.

Define the distance metric r(ti , tj)
2 = (ti − tj)

′M(ti − tj), M
is a positive definite matrix.

Now replace any of the already defined covariance kernels by
Cθ(ti − tj) = Cθ(r(ti , tj)).

Some non-stationary covariance functions are used in some
applications.

For example, dot product covariance function

Cθ(ti , tj) = σ2 + ti .tj

Neural network covariance function is used sometimes.

Cθ(ti , tj) =
2

π
sin−1

 2t̃ ′iΣt̃j√
(1 + 2t̃ ′iΣt̃i )(1 + 2t̃ ′jΣt̃j)

 ,

where t̃i = (1, ti )
′.
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Model and Gaussian process prior

The non-linear relationship between y and x is given by

y = f (x) + ε, ε ∼ N(0, τ2)

Need prior distributions on {f (·), τ2}.
f (·) is assigned a Gaussian process prior distribution
GP(µ,Cθ(·, ·))

Lets demonstrate everything with the exponential covariance
function. Let θ = (σ2, φ),

Cσ2,φ(ti , tj) = σ2 exp(−||ti − tj ||/φ) .

Note that this is going to create sample paths which are only
continuous and not even once differentiable while the function
f (cdot) may be more smooth.
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Prior

One may use Matern covariance kernel with a prior on the
smoothness parameter ν.

It was not possible to learn ν.

Thus it is a common practice to assign the prior distribution
with fixing ν.

For exponential kernel we are fixing ν = 2.

Prior on σ2 and τ2 are assigned inverse-gamma(a,b) prior.

A Normal prior on µ.

We need to be careful in assigning prior on φ.
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Model Fitting

Suppose we have the data (y1, x1), ...., (yn, xn).

Thus yi = f (x i ) + εi , εi ∼ N(0, τ2).

Suppose y = (y1, ..., yn)′, ε = (ε1, ..., εn)′ and
f = (f (x1), ..., f (xn))′.

Thus y = f + ε, ε ∼ N(0, τ2I ).

From the Gaussian process specification, a priori
f ∼ N(µ1n,Cσ2,φ).

The posterior distribution

p(φ, σ2, µ, τ2|y) ∝ N(y |µ1n,Cσ2,φ + τ2I )× N(µ|µµ, σ2µ)

× IG (τ2|a, b)× IG (σ2|a, b)× p(φ).
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Model Fitting

Model fitting proceeds through MCMC steps. We run Gibbs within
Metropolis.

µ|− follows a normal distribution.

σ2, τ2, φ are updated using Metropolis steps.

In spatial statistics, one uses the classical geostatistical
Gaussian process model

y(s) = x(s)′β + f (s) + ε(s), ε(s) ∼ N(0, τ2).

y = (y(s1), ..., y(sn))′, X = [x(s1) : · · · : x(s1)]′,
f = (f (s1), ..., f (sn))′.

Let Cσ2,φ = ((Cσ2,φ(s i , s j)))ni ,j=1

y = Xβ + f + ε, ε ∼ N(0, τ2I ).
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Posterior distribution of the function

Note that

p(f |y) ∝ N(y |f , τ2I )× N(f |µ1n,Cσ2,φ)

Thus f |y ,− is a multivariate normal distribution.

For {µ(l), σ2(l), τ2(l), φ(l)}Ll=1 L post burn-in MCMC samples,

we draw f (1), ..., f (L) L MCMC samples of the posterior
realization of the function at n data points.

For inference at an arbitrary point x , we calculate the
distribution of f (x)|y .

p(f (x)|y) =

∫
[p(f (x)|f (x1), ..., f (xn), σ2, τ2, φ, µ)

p(f (x1), ..., f (xn)|σ2, τ2, φ, µ, y)p(σ2, τ2, φ, µ|y)].

We already know how to draw samples from
p(f (x1), ..., f (xn)|σ2, τ2, φ, µ, y) and p(σ2, τ2, φ, µ|y).
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Posterior distribution of the function

f (x)|f (x1), ..., f (xn), σ2, τ2, φ, µ ∼ N(µf , σ
2
f ).

σ2f = Cσ2,φ(x , x)− cσ2,φ(x)′C−1
σ2,φ

cσ2,φ(x).

µf = µ+ cσ2,φ(x)′C−1
σ2,φ

(f − µ1n)

cσ2,φ(x) = (Cσ2,φ(x , x1), ...,Cσ2,φ(x , xn))′.

For spatial process models, finding posterior distribution of
the function is also similar.
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Prediction

Suppose the prediction of response is required at x .

Note that, y ∼ N(f (x), τ2).

We have already seen how to draw post burn-in samples
f (x)(1), ..., f (x)(L) from f (x)|y1, ..., yn.

Posterior predictive samples y (1), ..., y (L) are drawn from
y (l) ∼ N(f (x)(l), τ2(l)).

In sample prediction can be similarly performed.

Winter 2018



Multivariate Gaussian Process model

Multivariate Gaussian process models are most often used in
the geostatistical analysis.

Let y(s) = (y1(s), ..., ym(s))′, w(s) = (w1(s), ...,wm(s))′,
ε(s) = (ε1(s), ..., εm(s))′.

The multivariate model is given by

y(s) = Bx(s) + w(s) + ε(s),

B = ((βij))m,pi ,j=1, ε(s) ∼ N(0,Ψ).

When data observed at s1, ..., sn,

y = vec(BX ) + w + ε,

w = (w(s1)′, ...,w(sn)′)′, ε = (ε(s1)′, ..., ε(sn)′)′,
X = [x(s1) : · · · : x(sn)].

ε ∼ N(0, I ⊗Ψ).
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Modeling Multivariate Gaussian Process

Linear Model Coregionalization: w(s) = Av(s), where
v(s) = (v1(s), ..., vm(s))′, A is an m ×m matrix.

Is A identifiable?

Popular specification is A is a lower triangular matrix with
diagonal entries all positive.

v1(s), ..., vm(s) are assigned independent Gaussian process.

Multivariate Matern Kernel: Specification of Matern kernel
for the multivariate Gaussian process so that marginally each
component follows a Gaussian process with a univariate
Matern kernel.
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