Advanced Bayesian Computation Week 8

Rajarshi Guhaniyogi
Winter 2018

March 6, 2018

Random Projected Gaussian Process: Banerjee et al., 2013

- We have already shown one technique to select knots.
- However it was computationally cumbersome.
- What if we completely avoid the choice of knots.
- $\boldsymbol{w}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n}\right)\right)^{\prime}, \boldsymbol{\Phi}$ is an $n^{*} \times n$ random matrix.
- $\tilde{w}(\boldsymbol{s})=\mathrm{E}[w(\boldsymbol{s}) \mid \boldsymbol{\Phi} \boldsymbol{w}]=\boldsymbol{c}(\boldsymbol{s})^{\prime} \boldsymbol{\Phi}^{\prime}\left(\boldsymbol{\Phi} \boldsymbol{C}_{\boldsymbol{\theta}} \boldsymbol{\Phi}^{\prime}\right)^{-1} \boldsymbol{\Phi} \boldsymbol{w}$.
- $\boldsymbol{c}(\boldsymbol{s})=\left(C\left(\boldsymbol{s}, \boldsymbol{s}_{1}, \boldsymbol{\theta}\right), \ldots, C\left(\boldsymbol{s}, \boldsymbol{s}_{n}, \boldsymbol{\theta}\right)\right)^{\prime}$.
- $\tilde{\epsilon}(\boldsymbol{s}) \stackrel{i n d}{\sim} N\left(0, C(\boldsymbol{s}, \boldsymbol{s}, \boldsymbol{\theta})-\boldsymbol{c}(\boldsymbol{s})^{\prime} \boldsymbol{\Phi}^{\prime}\left(\boldsymbol{\Phi} \boldsymbol{C}_{\boldsymbol{\theta}} \boldsymbol{\Phi}^{\prime}\right)^{-1} \boldsymbol{\Phi} \boldsymbol{c}(\boldsymbol{s})\right)$.

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\tilde{\epsilon}(\boldsymbol{s})+\epsilon(\boldsymbol{s}), \epsilon(\boldsymbol{s}) \sim N\left(0, \tau^{2}\right)
$$

- They showed that the covariance matrix is better conditioned under this idea than modified predictive process.
- They have also proposed some ideas to design the matrix $\boldsymbol{\Phi}$ rather than randomly selecting entries of $\boldsymbol{\Phi}$.

Data Motivation: Isomap Face Dataset (http:

 //web.mit.edu/cocosci/isomap/datasets.html)- 698 images of an artificial face.
- 2-dim projection of each image:

$64 \times 64=4096$ pixels in size.
- Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http:

 //web.mit.edu/cocosci/isomap/datasets.html)Scientific Question \& Challenges
Predict horizontal pose angle of an image based on image pixels.

- Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http:

 //web.mit.edu/cocosci/isomap/datasets.html)
Scientific Question \& Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

- Complex nonlinear relationship between the response (pose angle) and predictors.
- Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http:

 //web.mit.edu/cocosci/isomap/datasets.html)
Scientific Question \& Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

- Complex nonlinear relationship between the response (pose angle) and predictors.
- Predictors are lying on a complex nonlinear manifold.
- Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http: //web.mit.edu/cocosci/isomap/datasets.html)

Scientific Question \& Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

- Complex nonlinear relationship between the response (pose angle) and predictors.
- Predictors are lying on a complex nonlinear manifold.
- large number of predictors and large sample size.
- Horizontal pose angle of each image is given.

State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

A Unsatisfactory predictive uncertainty.
B No theory justification.
c Not scalable with large sample size and predictiors

State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

A Unsatisfactory predictive uncertainty.
B No theory justification.
c Not scalable with large sample size and predictiors
(1) Tree based approaches: CART (Breiman, 1984), Random Forest (Breiman, 2001) (A, B, C), BART (Chipman et al., 2008) (B, C), Treed GP (Gramacy et al., 2007) (B, C).
(2) Two stage approaches: clustering high dimensional predictors (Belkin et al., 2003) followed by independent model fitting in each cluster (A, B).
(3) Model Based Full Bayesian approaches: GP latent variable models (Lawrence, 2005), PCA for mixture models (Chen et al., 2010) (C).

Compressed Gaussian Process

- $\boldsymbol{\Psi}=\left(\left(\Psi_{i j}\right)\right), \Psi_{i j} \sim N(0,1)$: Choice motivated by the popular compressed sensing literature (Ji et al., 20018).
- $\boldsymbol{x}=\boldsymbol{z}+\boldsymbol{\delta}, \boldsymbol{z} \in \mathscr{M}, \boldsymbol{\delta} \sim N\left(\mathbf{0}, \tau^{2} \boldsymbol{I}_{p}\right)$.

Compressed GP model

$$
\begin{aligned}
y & =\mu(\boldsymbol{\Psi} \boldsymbol{x})+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right) \\
\mu(\cdot) \mid \sigma^{2} & \sim G P\left(0, \sigma^{2} K(\cdot, \cdot, \phi)\right) \\
K\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}, \phi\right) & =\exp \left(-\phi\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|^{2}\right)
\end{aligned}
$$

Model fitting requires $n \times n$ matrix inversion at each MCMC

Strategy when sample size (n) is large

Large sample approximation of CGP

$$
\boldsymbol{y}=\tilde{\mu}(\boldsymbol{\Psi} \boldsymbol{x})+\epsilon
$$

$\tilde{\mu}(\cdot) \rightarrow$ approximation of $\mu(\cdot)$.

Strategy when sample size (n) is large

Large sample approximation of CGP

$$
y=\tilde{\mu}(\boldsymbol{\Psi} \boldsymbol{x})+\epsilon
$$

$\tilde{\mu}(\cdot) \rightarrow$ approximation of $\mu(\cdot)$.

- $\tilde{\mu}$ can be chosen from the rich class of low rank Gaussian processes.

Strategy when sample size (n) is large

Large sample approximation of CGP

$$
y=\tilde{\mu}(\boldsymbol{\Psi} \boldsymbol{x})+\epsilon
$$

$\tilde{\mu}(\cdot) \rightarrow$ approximation of $\mu(\cdot)$.

- $\tilde{\mu}$ can be chosen from the rich class of low rank Gaussian processes.
- Following Banerjee et al. (2013) we choose

$$
\tilde{\mu}(\boldsymbol{\Psi} \boldsymbol{x})=E(\mu(\boldsymbol{\Psi} \boldsymbol{x}) \mid \boldsymbol{\Phi} \mu(\boldsymbol{\Psi} \boldsymbol{X}))
$$

$\boldsymbol{\Phi}$ is an $n^{*} \times n$ matrix, $\Phi_{i j} \sim N(0,1)$.

- Each MCMC iteration requires $n^{*} \times n^{*}$ matrix inversion.
- $n^{*} \ll n$ implies havoc computational gain.

General Theoretical Setup: Guhaniyogi et al., 2013

True regression function $\mu_{0} \in \mathscr{C}^{\boldsymbol{s}}$
Class of regression functions fitted to the data
ρ metric ball of radius ϵ_{n} around the truth

- $\rho\left(\mu, \mu_{0}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(\boldsymbol{x}_{i}\right)-\mu_{0}\left(\boldsymbol{x}_{i}\right)\right)^{2}$

General Theoretical Setup: Guhaniyogi et al., 2013

True regression function $\mu_{0} \in \mathscr{C}^{\boldsymbol{s}}$
Class of regression functions fitted to the data
ρ metric ball of radius ϵ_{n} around the truth

- $\rho\left(\mu, \mu_{0}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\mu\left(\boldsymbol{x}_{i}\right)-\mu_{0}\left(\boldsymbol{x}_{i}\right)\right)^{2}$

Under what condition it shrinks fast enough?
Ordinary GP regression shrinks at the rate $n^{-s /(2 s+p)}$.

Main Results

Theorem
$1 \mathscr{M}$ is a d dimensional $\mathscr{C}^{r_{1}}$ compact sub-manifold of \mathscr{R}^{p}.

Main Results

Theorem

$1 \mathscr{M}$ is a d dimensional $\mathscr{C}^{r_{1}}$ compact sub-manifold of \mathscr{R}^{p}.
$2 T: \mathscr{R}^{p} \rightarrow \mathscr{R}^{m}, m \ll p$ s.t. restriction of T in \mathscr{M} is a $\mathscr{C}^{r_{2}}$ diffeomorphism onto its image.
$3 s<\min \left\{2, r_{1}-1, r_{2}-1\right\}$.
Then $\epsilon_{n}=n^{-s /(2 s+d)} \log (n)^{d+1}$.

- $T(\boldsymbol{x})=\boldsymbol{\Psi} \boldsymbol{x}$ is both dimension reducing map and a diffeomorphism onto its image as w.p. $1-\phi_{n}$

$$
(1-\kappa) \sqrt{\frac{m}{p}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|<\left\|T\left(\boldsymbol{x}_{i}\right)-T\left(\boldsymbol{x}_{j}\right)\right\|<(1+\kappa) \sqrt{\frac{m}{p}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| .
$$

- Additionally noise reduction is achieved through T.

Main Results

Theorem

$1 \mathscr{M}$ is a d dimensional $\mathscr{C}^{r_{1}}$ compact sub-manifold of \mathscr{R}^{p}.
$2 T: \mathscr{R}^{p} \rightarrow \mathscr{R}^{m}, m \ll p$ s.t. restriction of T in \mathscr{M} is a $\mathscr{C}^{r_{2}}$ diffeomorphism onto its image.
$3 s<\min \left\{2, r_{1}-1, r_{2}-1\right\}$.
Then $\epsilon_{n}=n^{-s /(2 s+d)} \log (n)^{d+1}$.

- $T(\boldsymbol{x})=\boldsymbol{\Psi} \boldsymbol{x}$ is both dimension reducing map and a diffeomorphism onto its image as w.p. $1-\phi_{n}$

$$
(1-\kappa) \sqrt{\frac{m}{p}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\|<\left\|T\left(\boldsymbol{x}_{i}\right)-T\left(\boldsymbol{x}_{j}\right)\right\|<(1+\kappa) \sqrt{\frac{m}{p}}\left\|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right\| .
$$

- Additionally noise reduction is achieved through T.

Isomap face data analysis: Set up

- 20 random splitting of the data into 648 training and 50 test samples.
- response is standardized to have unit variance.
- To deal with a more challenging case, $N\left(0, \tau^{2}\right)$ noise is added to each of 4096 pixels to form noisy predictors.
- CGP model for large n is fitted to the data.
- Predictive inference is carried out with summary measures mean squared prediction error (MSPE), coverage and length of 95% predictive interval.

Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)
Distributed Supervised Learning (DSL)

Isomap face data analysis: Competitors

- Compress high dimensional predictors and apply RF and BART on compressed predictors.

Computation Time (in seconds): CGP is the fastest

Mean Squared Prediction error (MSPE): Compressed methods perform best

$y_{1}, \ldots, y_{k} \rightarrow$ observed, $y_{1}^{*}, \ldots, y_{k}^{*} \rightarrow$ predicted

$$
M S P E=\frac{1}{k} \sum_{i=1}^{k}\left(y_{i}-y_{i}^{*}\right)^{2}
$$

τ	CGP	GP	CBART	CRF	DSL	2GP
0.03	$0.14_{0.059}$	$0.92_{0.074}$	$0.06_{0.005}$	$0.05_{0.007}$	$0.68_{0.023}$	$0.95_{0.062}$
0.06	$0.09_{0.006}$	$0.79_{0.056}$	$0.09_{0.007}$	$0.09_{0.008}$	$0.75_{0.015}$	$0.94_{0.041}$
0.10	$0.12_{0.008}$	$0.83_{0.077}$	$0.12_{0.005}$	$0.13_{0.011}$	$0.54_{0.014}$	$0.92_{0.013}$

Table: MSPE and standard error (computed using 20 samples) for all the competitors over 50 replications

Coverage and Length of 95\% Predictive Intervals

Figure: coverage and length of 95\% PI's for CGP, GP, CBART, CRF. 95\% CI's are shown at each point

Gaussian process with compactly supported correlation functions

- Under Matern correlation kernel, the correlation between two points is positive even when they are sufficiently far apart.
- In practice, one may safely assume that two observations are not correlated to each other if they are sufficiently far apart.
- How to impose that restriction?
- What if we define a correlation kernel $C_{\nu}\left(\boldsymbol{s}, \boldsymbol{s}^{\prime}\right)$ which is 0 when $\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|>\nu$.
- These are known as tapered correlation kernels.
- Wendland (1995) proposed tapered correlation kernels and later Gneting (2002) formalized the concept.

Gaussian process with compactly supported correlation functions

- Kaufman et al. (2009) proposed

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+w(\boldsymbol{s}) \eta(\boldsymbol{s})+\epsilon(\boldsymbol{s}), \epsilon(\boldsymbol{s}) \sim N\left(0, \tau^{2}\right)
$$

- $w(\cdot) \sim G P\left(0, C_{\theta}(\cdot, \cdot)\right), \eta(\cdot) \sim G P\left(0, C_{\nu}(\cdot, \cdot)\right)$.
- The covariance matrix of $\boldsymbol{y}=\left(y\left(s_{1}\right), \ldots, y\left(s_{n}\right)\right)^{\prime}$ becomes sparse.
- Use sparse matrix solvers to efficiently compute inverse.
- It was proved theoretically that this model will asymptotically provide the same inference as the full Gaussian process model without tapering if the tapering range ν is chosen properly.
- In practice, we do not know how to choose ν.
- ν acts as a tuning parameter that is adjusted based on the available computational resources.

Tapered Predictive Process
MPP side Recall the model for modified predictive process

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\tilde{\epsilon}(\boldsymbol{s})+\epsilon(\boldsymbol{s})
$$

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

$$
\begin{aligned}
\tilde{\epsilon}(\cdot) & \sim G P\left(0, C_{t a p}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)\right) \\
C_{t a p}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2} ; \boldsymbol{\theta}\right) & =C_{\tilde{\epsilon}}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2} ; \boldsymbol{\theta}\right) C_{\nu}\left(\left\|\boldsymbol{s}_{1}-\boldsymbol{s}_{2}\right\|\right)
\end{aligned}
$$

- $C_{\nu}\left(\left\|\boldsymbol{s}_{1}-\boldsymbol{s}_{2}\right\|\right)$ is a compactly supported correlation function on $[0, \nu]$.

Tapered Predictive Process
MPP slide Recall the model for modified predictive process

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\tilde{\epsilon}(\boldsymbol{s})+\epsilon(\boldsymbol{s})
$$

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

$$
\begin{aligned}
\tilde{\epsilon}(\cdot) & \sim G P\left(0, C_{t a p}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2}\right)\right) \\
C_{t a p}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2} ; \boldsymbol{\theta}\right) & =C_{\tilde{\epsilon}}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2} ; \boldsymbol{\theta}\right) C_{\nu}\left(\left\|\boldsymbol{s}_{1}-\boldsymbol{s}_{2}\right\|\right)
\end{aligned}
$$

- $C_{\nu}\left(\left\|\boldsymbol{s}_{1}-\boldsymbol{s}_{2}\right\|\right)$ is a compactly supported correlation function on $[0, \nu]$.

$$
\begin{aligned}
& \nu=0 \Rightarrow M P P \\
& \nu=\infty \Rightarrow G S P
\end{aligned}
$$

Low rank models:Do they oversmooth?

- Mean square continuity and differentiability at \boldsymbol{s}_{0} of a process $w(\cdot)$ requires existence of some vector $\nabla w\left(\boldsymbol{s}_{0}\right)$ with,

$$
\lim _{\boldsymbol{s} \rightarrow \boldsymbol{s}_{0}} E\left(w(\boldsymbol{s})-w\left(\boldsymbol{s}_{0}\right)\right)^{2}=0
$$

$$
\lim _{h \rightarrow 0} E\left(\frac{w\left(\boldsymbol{s}_{0}+h \boldsymbol{u}\right)-w\left(\boldsymbol{s}_{0}\right)}{h}-\left\langle\nabla w\left(\boldsymbol{s}_{0}\right), \boldsymbol{u}\right\rangle\right)^{2}=0
$$

Low rank models:Do they oversmooth?

- Mean square continuity and differentiability at \boldsymbol{s}_{0} of a process $w(\cdot)$ requires existence of some vector $\nabla w\left(\boldsymbol{s}_{0}\right)$ with,

$$
\lim _{\boldsymbol{s} \rightarrow \boldsymbol{s}_{0}} E\left(w(\boldsymbol{s})-w\left(\boldsymbol{s}_{0}\right)\right)^{2}=0
$$

$$
\lim _{h \rightarrow 0} E\left(\frac{w\left(\boldsymbol{s}_{0}+h \boldsymbol{u}\right)-w\left(\boldsymbol{s}_{0}\right)}{h}-\left\langle\nabla w\left(\boldsymbol{s}_{0}\right), \boldsymbol{u}\right\rangle\right)^{2}=0
$$

Theorem on Smoothness (Guhaniyogi et al., 2012)

With matern correlation function having smoothness m,
1 Predictive Process model is infinitely mean square differentiable except at the set of knot points \mathscr{S}^{*}.
2 Modified Predictive Process is not mean square continuous at any point.
3 Tapered Predictive Process is $\min (m, k)$-times mean square differentiable except at \mathscr{S}^{*}, where $C_{\nu}(\cdot)$ is k-times differentiable.

Results

	True	Non-spatial	PP	Modified PP	Tapered PP
β_{0}	8.25	$8.26(8.15,8.27)$	$10.83(9.29,12.60)$	$9.21(7.83,10.97)$	$8.43(7.20,9.64)$
σ^{2}	6	-	$8.95(2.68,15.81)$	$5.07(3.44,7.32)$	$4.06(3.12,5.91)$
τ^{2}	0.5	$3.59(3.30,3.88)$	$2.20(2.02,2.40)$	$.73(.39,1.17)$	$0.43(0.34,0.55)$
ϕ	4	-	$2.78(2.32,3.62)$	$2.73(2.23,5.38)$	$4.09(2.61,5.77)$
G	-	3959.95	2397.21	347.16	146.72
P	-	3943.83	2502.70	1471.05	858.04
D	-	7903.79	4899.91	1818.22	1004.76
p_{D}	-	1.95	31.79	731.42	1010.30
DIC	-	2509.32	2000.50	1628.88	1370.06

