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Random Projected Gaussian Process: Banerjee et al., 2013

We have already shown one technique to select knots.

However it was computationally cumbersome.

What if we completely avoid the choice of knots.

w = (w(s1), ...,w(sn))′, Φ is an n∗ × n random matrix.

w̃(s) = E[w(s)|Φw ] = c(s)′Φ′(ΦCθΦ′)−1Φw .

c(s) = (C (s, s1,θ), ...,C (s, sn,θ))′.

ε̃(s)
ind .∼ N(0,C (s, s,θ)− c(s)′Φ′(ΦCθΦ′)−1Φc(s)).

y(s) = x(s)′β + w̃(s) + ε̃(s) + ε(s), ε(s) ∼ N(0, τ2)

They showed that the covariance matrix is better conditioned
under this idea than modified predictive process.

They have also proposed some ideas to design the matrix Φ
rather than randomly selecting entries of Φ.
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Data Motivation: Isomap Face Dataset (http:
//web.mit.edu/cocosci/isomap/datasets.html)

698 images of an
artificial face.

2-dim projection of
each image:
64× 64 = 4096 pixels
in size.

Horizontal pose angle
of each image is
given.

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels.
Challenges:

I Complex nonlinear relationship between the response (pose
angle) and predictors.

I Predictors are lying on a complex nonlinear manifold.

I large number of predictors and large sample size.
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State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

A Unsatisfactory predictive uncertainty.

B No theory justification.

C Not scalable with large sample size and predictiors

1 Tree based approaches: CART (Breiman, 1984), Random
Forest (Breiman, 2001) (A, B, C), BART (Chipman et al.,
2008) (B, C), Treed GP (Gramacy et al., 2007) (B, C).

2 Two stage approaches: clustering high dimensional predictors
(Belkin et al., 2003) followed by independent model fitting in
each cluster (A, B).

3 Model Based Full Bayesian approaches: GP latent variable
models (Lawrence, 2005), PCA for mixture models (Chen et
al., 2010) (C).
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Compressed Gaussian Process

Ψm

p

=xp

1

Ψxm

1

Ψ = ((Ψij)), Ψij ∼ N(0, 1): Choice motivated by the popular
compressed sensing literature (Ji et al., 20018).

x = z + δ, z ∈M , δ ∼ N(0, τ2I p).

Compressed GP model

y = µ(Ψx) + ε, ε ∼ N(0, σ2)

µ(·)|σ2 ∼ GP(0, σ2K (·, ·, φ))

K (x i , x j , φ) = exp
(
−φ||x i − x j ||2

)
Model fitting requires n × n matrix inversion at each MCMC.
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Strategy when sample size (n) is large

Large sample approximation of CGP

y = µ̃(Ψx) + ε,

µ̃(·)→ approximation of µ(·).

µ̃ can be chosen from the rich class of low rank Gaussian
processes.

Following Banerjee et al. (2013) we choose

µ̃(Ψx) = E (µ(Ψx)|Φµ(ΨX ))

Φ is an n∗ × n matrix, Φij ∼ N(0, 1).

Each MCMC iteration requires n∗ × n∗ matrix inversion.

n∗ << n implies havoc computational gain.
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General Theoretical Setup: Guhaniyogi et al., 2013

True regression function µ0 ∈ C s

Class of regression functions fitted to the data

ρ metric ball of radius εn around the truth

ρ(µ, µ0)2 = 1
n

∑n
i=1(µ(x i )− µ0(x i ))2

Under what condition it shrinks fast enough?

Ordinary GP regression shrinks at the rate n−s/(2s+p).
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Main Results

Theorem

1 M is a d dimensional C r1compact sub-manifold of Rp.

2 T : Rp → Rm, m << p s.t. restriction of T in M is a C r2

diffeomorphism onto its image.

3 s < min{2, r1 − 1, r2 − 1}.

Then εn = n−s/(2s+d) log(n)d+1.

T (x) = Ψx is both dimension reducing map and a
diffeomorphism onto its image as w.p. 1− φn

(1− κ)

√
m

p
||x i − x j || < ||T (x i )− T (x j)|| < (1 + κ)

√
m

p
||x i − x j ||.

Additionally noise reduction is achieved through T .
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Isomap face data analysis: Set up

20 random splitting of the data into 648 training and 50 test
samples.

response is standardized to have unit variance.

To deal with a more challenging case, N(0, τ2) noise is added
to each of 4096 pixels to form noisy predictors.

CGP model for large n is fitted to the data.

Predictive inference is carried out with summary measures
mean squared prediction error (MSPE), coverage and length
of 95% predictive interval.
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Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)

Distributed Supervised Learning (DSL)

Bayesian Competitors

GP

2GP

Compressed Bayesian Addi-
tive Regression Tree (CBART)

Compress high dimensional predictors and apply RF and
BART on compressed predictors.
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Computation Time (in seconds): CGP is the fastest
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Mean Squared Prediction error (MSPE): Compressed
methods perform best

y1, ..., yk → observed, y∗1 , ..., y
∗
k → predicted

MSPE =
1

k

k∑
i=1

(yi − y∗i )2

τ CGP GP CBART CRF DSL 2GP

0.03 0.140.059 0.920.074 0.060.005 0.050.007 0.680.023 0.950.062

0.06 0.090.006 0.790.056 0.090.007 0.090.008 0.750.015 0.940.041

0.10 0.120.008 0.830.077 0.120.005 0.130.011 0.540.014 0.920.013

Table: MSPE and standard error (computed using 20 samples) for all the competitors
over 50 replications
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Coverage and Length of 95% Predictive Intervals
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Figure: coverage and length of 95% PI’s for CGP, GP, CBART, CRF. 95% CI’s are
shown at each point
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Gaussian process with compactly supported correlation
functions

Under Matern correlation kernel, the correlation between two
points is positive even when they are sufficiently far apart.

In practice, one may safely assume that two observations are
not correlated to each other if they are sufficiently far apart.

How to impose that restriction?

What if we define a correlation kernel Cν(s, s ′) which is 0
when ||s − s ′|| > ν.

These are known as tapered correlation kernels.

Wendland (1995) proposed tapered correlation kernels and
later Gneting (2002) formalized the concept.
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Gaussian process with compactly supported correlation
functions

Kaufman et al. (2009) proposed

y(s) = x(s)′β + w(s)η(s) + ε(s), ε(s) ∼ N(0, τ2).

w(·) ∼ GP(0,Cθ(·, ·)), η(·) ∼ GP(0,Cν(·, ·)).

The covariance matrix of y = (y(s1), ..., y(sn))′ becomes
sparse.

Use sparse matrix solvers to efficiently compute inverse.

It was proved theoretically that this model will asymptotically
provide the same inference as the full Gaussian process model
without tapering if the tapering range ν is chosen properly.

In practice, we do not know how to choose ν.

ν acts as a tuning parameter that is adjusted based on the
available computational resources.
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Tapered Predictive Process

MPP slide Recall the model for modified predictive process

y(s) = x(s)′β + w̃(s) + ε̃(s) + ε(s)

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

ε̃(·) ∼ GP(0,Ctap(s1, s2))

Ctap(s1, s2;θ) = Cε̃(s1, s2;θ)Cν(‖s1 − s2‖) ,

Cν(‖s1 − s2‖) is a compactly supported correlation function
on [0, ν].

ν = 0⇒ MPP

ν = ∞⇒ GSP
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Low rank models:Do they oversmooth?

Mean square continuity and differentiability at s0 of a process
w(·) requires existence of some vector ∇w(s0) with,

lim
s→s0

E (w(s)− w(s0))2 = 0

lim
h→0

E

(
w(s0 + hu)− w(s0)

h
− 〈∇w(s0),u〉

)2

= 0

Theorem on Smoothness (Guhaniyogi et al., 2012)

With matern correlation function having smoothness m,

1 Predictive Process model is infinitely mean square
differentiable except at the set of knot points S ∗.

2 Modified Predictive Process is not mean square continuous at
any point.

3 Tapered Predictive Process is min(m,k)-times mean square
differentiable except at S ∗, where Cν(·) is k-times
differentiable.
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Results

True Non-spatial PP Modified PP Tapered PP

β0 8.25 8.26 (8.15 , 8.27) 10.83 (9.29 , 12.60) 9.21 (7.83 , 10.97) 8.43 (7.20 , 9.64)

σ2 6 – 8.95 (2.68 , 15.81) 5.07 (3.44 , 7.32) 4.06 (3.12 , 5.91)

τ2 0.5 3.59 (3.30 , 3.88) 2.20 (2.02 , 2.40) .73 (.39 , 1.17) 0.43 (0.34 , 0.55)

φ 4 – 2.78 (2.32 , 3.62) 2.73 (2.23 , 5.38) 4.09 (2.61 , 5.77)

G – 3959.95 2397.21 347.16 146.72

P – 3943.83 2502.70 1471.05 858.04

D – 7903.79 4899.91 1818.22 1004.76

pD – 1.95 31.79 731.42 1010.30

DIC – 2509.32 2000.50 1628.88 1370.06
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