Advanced Bayesian Computation Week 8

Rajarshi Guhaniyogi Winter 2018

March 6, 2018

Winter 2018

Random Projected Gaussian Process: Banerjee et al., 2013

- We have already shown one technique to select knots.
- However it was computationally cumbersome.
- What if we completely avoid the choice of knots.
- $\boldsymbol{w} = (w(\boldsymbol{s}_1), ..., w(\boldsymbol{s}_n))'$, $\boldsymbol{\Phi}$ is an $n^* \times n$ random matrix.
- $\tilde{w}(s) = \mathsf{E}[w(s)|\Phi w] = c(s)'\Phi'(\Phi C_{\theta} \Phi')^{-1}\Phi w.$
- $c(s) = (C(s, s_1, \theta), ..., C(s, s_n, \theta))'.$ • $\tilde{\epsilon}(s) \stackrel{ind.}{\sim} N(0, C(s, s, \theta) - c(s)' \Phi' (\Phi C_{\theta} \Phi')^{-1} \Phi c(s)).$

$$y(s) = x(s)'\beta + \tilde{w}(s) + \tilde{\epsilon}(s) + \epsilon(s), \ \epsilon(s) \sim N(0, \tau^2)$$

- They showed that the covariance matrix is better conditioned under this idea than modified predictive process.
- They have also proposed some ideas to design the matrix Φ rather than randomly selecting entries of Φ.

Data Motivation: Isomap Face Dataset (http: //web.mit.edu/cocosci/isomap/datasets.html)

- 698 images of an artificial face.
- 2-dim projection of each image: 64 × 64 = 4096 pixels in size.
- Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http: //web.mit.edu/cocosci/isomap/datasets.html)

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels.

• Horizontal pose angle of each image is given.

Data Motivation: Isomap Face Dataset (http: //web.mit.edu/cocosci/isomap/datasets.html)

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

 Complex nonlinear relationship between the response (pose angle) and predictors.

• Horizontal pose angle of each image is given.

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

- Complex nonlinear relationship between the response (pose angle) and predictors.
- Predictors are lying on a complex nonlinear manifold.
- Horizontal pose angle of each image is given.

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels. Challenges:

- Complex nonlinear relationship between the response (pose angle) and predictors.
- Predictors are lying on a complex nonlinear manifold.
- ► large number of predictors and large sample size.
- Horizontal pose angle of each image is given.

State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

- A Unsatisfactory predictive uncertainty.
- **B** No theory justification.
- C Not scalable with large sample size and predictions

Issues with existing approaches

- A Unsatisfactory predictive uncertainty.
- **B** No theory justification.
- **C** Not scalable with large sample size and predictiors
 - Tree based approaches: CART (Breiman, 1984), Random Forest (Breiman, 2001) (A, B, C), BART (Chipman et al., 2008) (B, C), Treed GP (Gramacy et al., 2007) (B, C).
 - Two stage approaches: clustering high dimensional predictors (Belkin et al., 2003) followed by independent model fitting in each cluster (A, B).
 - Model Based Full Bayesian approaches: GP latent variable models (Lawrence, 2005), PCA for mixture models (Chen et al., 2010) (C).

Compressed Gaussian Process

Ψ = ((Ψ_{ij})), Ψ_{ij} ~ N(0, 1): Choice motivated by the popular compressed sensing literature (Ji et al., 20018).

• $\mathbf{x} = \mathbf{z} + \boldsymbol{\delta}, \ \mathbf{z} \in \mathscr{M}, \ \boldsymbol{\delta} \sim N(\mathbf{0}, \tau^2 \boldsymbol{I}_p).$

Compressed GP model

$$y = \mu(\boldsymbol{\Psi}\boldsymbol{x}) + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$

$$\mu(\cdot)|\sigma^2 \sim GP(0, \sigma^2 K(\cdot, \cdot, \phi))$$

$$K(\boldsymbol{x}_i, \boldsymbol{x}_j, \phi) = \exp(-\phi||\boldsymbol{x}_i - \boldsymbol{x}_j||^2)$$

Model fitting requires $n \times n$ matrix inversion at each MCMC.

Strategy when sample size (n) is large

Large sample approximation of CGP

$$y = \tilde{\mu}(\Psi x) + \epsilon,$$

 $\tilde{\mu}(\cdot) \rightarrow \text{approximation of } \mu(\cdot).$

白をくぼとく

Strategy when sample size (n) is large

Large sample approximation of CGP

$$y = \tilde{\mu}(\Psi x) + \epsilon,$$

 $\tilde{\mu}(\cdot) \rightarrow \text{approximation of } \mu(\cdot).$

• $\tilde{\mu}$ can be chosen from the rich class of low rank Gaussian processes.

Large sample approximation of CGP

$$y = \tilde{\mu}(\Psi x) + \epsilon,$$

 $\tilde{\mu}(\cdot) \rightarrow \text{approximation of } \mu(\cdot).$

- $\tilde{\mu}$ can be chosen from the rich class of low rank Gaussian processes.
- Following Banerjee et al. (2013) we choose

$$ilde{\mu}(\boldsymbol{\Psi} \boldsymbol{x}) = E(\mu(\boldsymbol{\Psi} \boldsymbol{x}) | \boldsymbol{\Phi} \mu(\boldsymbol{\Psi} \boldsymbol{X}))$$

 $\mathbf{\Phi}$ is an $n^* imes n$ matrix, $\Phi_{ij} \sim N(0,1)$.

- Each MCMC iteration requires $n^* \times n^*$ matrix inversion.
- $n^* << n$ implies havoc computational gain.

General Theoretical Setup: Guhaniyogi et al., 2013

True regression function $\mu_0 \in \mathscr{C}^s$

Class of regression functions fitted to the data

 ρ metric ball of radius ϵ_n around the truth

•
$$\rho(\mu,\mu_0)^2 = \frac{1}{n} \sum_{i=1}^n (\mu(\mathbf{x}_i) - \mu_0(\mathbf{x}_i))^2$$

General Theoretical Setup: Guhaniyogi et al., 2013

True regression function $\mu_0 \in \mathscr{C}^s$

Class of regression functions fitted to the data

 ρ metric ball of radius ϵ_n around the truth

•
$$\rho(\mu,\mu_0)^2 = \frac{1}{n} \sum_{i=1}^n (\mu(\mathbf{x}_i) - \mu_0(\mathbf{x}_i))^2$$

Under what condition it shrinks fast enough?

Ordinary GP regression shrinks at the rate $n^{-s/(2s+p)}$.

Theorem

1 \mathcal{M} is a *d* dimensional \mathcal{C}^{r_1} compact sub-manifold of \mathcal{R}^p .

• • • • • • • •

э

∍⊳

Theorem

- **1** \mathcal{M} is a *d* dimensional \mathscr{C}^{r_1} compact sub-manifold of \mathscr{R}^p .
- **2** $T : \mathscr{R}^p \to \mathscr{R}^m$, $m \ll p$ s.t. restriction of T in \mathscr{M} is a \mathscr{C}^{r_2} diffeomorphism onto its image.

3
$$s < \min\{2, r_1 - 1, r_2 - 1\}.$$

Then $\epsilon_n = n^{-s/(2s+d)} \log(n)^{d+1}$.

T(*x*) = Ψ*x* is both dimension reducing map and a diffeomorphism onto its image as w.p. 1 - φ_n

$$(1-\kappa)\sqrt{rac{m}{p}}||oldsymbol{x}_i-oldsymbol{x}_j|| < ||oldsymbol{T}(oldsymbol{x}_i)-oldsymbol{T}(oldsymbol{x}_j)|| < (1+\kappa)\sqrt{rac{m}{p}}||oldsymbol{x}_i-oldsymbol{x}_j||$$

• Additionally noise reduction is achieved through T.

Theorem

- **1** \mathcal{M} is a *d* dimensional \mathcal{C}^{r_1} compact sub-manifold of \mathcal{R}^p .
- **2** $T : \mathscr{R}^p \to \mathscr{R}^m$, $m \ll p$ s.t. restriction of T in \mathscr{M} is a \mathscr{C}^{r_2} diffeomorphism onto its image.

3
$$s < \min\{2, r_1 - 1, r_2 - 1\}.$$

Then
$$\epsilon_n = n^{-s/(2s+d)} \log(n)^{d+1}$$
.

T(x) = Ψx is both dimension reducing map and a diffeomorphism onto its image as w.p. 1 - φ_n

$$(1-\kappa)\sqrt{rac{m}{p}}||oldsymbol{x}_i-oldsymbol{x}_j|| < ||oldsymbol{T}(oldsymbol{x}_i)-oldsymbol{T}(oldsymbol{x}_j)|| < (1+\kappa)\sqrt{rac{m}{p}}||oldsymbol{x}_i-oldsymbol{x}_j||$$

• Additionally noise reduction is achieved through T.

- 20 random splitting of the data into 648 training and 50 test samples.
- response is standardized to have unit variance.
- To deal with a more challenging case, $N(0, \tau^2)$ noise is added to each of 4096 pixels to form noisy predictors.
- CGP model for large *n* is fitted to the data.
- Predictive inference is carried out with summary measures mean squared prediction error (MSPE), coverage and length of 95% predictive interval.

Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)

Distributed Supervised Learning (DSL)

Winter 2018

Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)

Distributed Supervised Learning (DSL)

• Compress high dimensional predictors and apply RF and BART on compressed predictors.

Computation Time (in seconds): CGP is the fastest

Mean Squared Prediction error (MSPE): Compressed methods perform best

 $y_1, ..., y_k \rightarrow \textbf{observed}, \ y_1^*, ..., y_k^* \rightarrow \textbf{predicted}$

$$MSPE = \frac{1}{k} \sum_{i=1}^{k} (y_i - y_i^*)^2$$

τ	CGP	GP	CBART	CRF	DSL	2GP
0.03	$0.14_{0.059}$	0.920.074	0.060.005	0.050.007	0.680.023	0.950.062
0.06	0.090.006	0.790.056	0.090.007	0.090.008	0.750.015	0.940.041
0.10	$0.12_{0.008}$	0.830.077	$0.12_{0.005}$	0.130.011	0.54 _{0.014}	0.920.013

Table: MSPE and standard error (computed using 20 samples) for all the competitors over 50 replications

Coverage and Length of 95% Predictive Intervals

Figure: coverage and length of 95% PI's for CGP, GP, CBART, CRF. 95% CI's are shown at each point

- Under Matern correlation kernel, the correlation between two points is positive even when they are sufficiently far apart.
- In practice, one may safely assume that two observations are not correlated to each other if they are sufficiently far apart.
- How to impose that restriction?
- What if we define a correlation kernel $C_{\nu}(\boldsymbol{s}, \boldsymbol{s}')$ which is 0 when $||\boldsymbol{s} \boldsymbol{s}'|| > \nu$.
- These are known as tapered correlation kernels.
- Wendland (1995) proposed tapered correlation kernels and later Gneting (2002) formalized the concept.

Gaussian process with compactly supported correlation functions

• Kaufman et al. (2009) proposed

$$\mathbf{y}(\mathbf{s}) = \mathbf{x}(\mathbf{s})'\boldsymbol{\beta} + w(\mathbf{s})\eta(\mathbf{s}) + \epsilon(\mathbf{s}), \ \epsilon(\mathbf{s}) \sim N(0, \tau^2).$$

- $w(\cdot) \sim GP(0, C_{\theta}(\cdot, \cdot)), \ \eta(\cdot) \sim GP(0, C_{\nu}(\cdot, \cdot)).$
- The covariance matrix of $y = (y(s_1), ..., y(s_n))'$ becomes sparse.
- Use sparse matrix solvers to efficiently compute inverse.
- It was proved theoretically that this model will asymptotically provide the same inference as the full Gaussian process model without tapering if the tapering range ν is chosen properly.
- In practice, we do not know how to choose ν .
- ν acts as a tuning parameter that is adjusted based on the available computational resources.

Tapered Predictive Process

▶ MPP slide Recall the model for modified predictive process

$$y(s) = x(s)'eta + ilde{w}(s) + ilde{\epsilon}(s) + \epsilon(s)$$

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

$$egin{array}{lll} \widetilde{\epsilon}(\cdot) &\sim & GP(0, C_{tap}(oldsymbol{s}_1, oldsymbol{s}_2)) \ C_{tap}(oldsymbol{s}_1, oldsymbol{s}_2; oldsymbol{ heta}) &= & C_{\widetilde{\epsilon}}(oldsymbol{s}_1, oldsymbol{s}_2; oldsymbol{ heta}) C_{
u}(\|oldsymbol{s}_1 - oldsymbol{s}_2\|) \ , \end{array}$$

 C_ν(||s₁ − s₂||) is a compactly supported correlation function on [0, ν].

Tapered Predictive Process

▶ MPP slide Recall the model for modified predictive process

$$y(s) = x(s)'eta + ilde{w}(s) + ilde{\epsilon}(s) + \epsilon(s)$$

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

$$\widetilde{\epsilon}(\cdot) \sim GP(0, C_{tap}(\boldsymbol{s}_1, \boldsymbol{s}_2))$$

 $C_{tap}(\boldsymbol{s}_1, \boldsymbol{s}_2; \boldsymbol{ heta}) = C_{\widetilde{\epsilon}}(\boldsymbol{s}_1, \boldsymbol{s}_2; \boldsymbol{ heta}) C_{\nu}(\|\boldsymbol{s}_1 - \boldsymbol{s}_2\|),$

 C_ν(||s₁ − s₂||) is a compactly supported correlation function on [0, ν].

$$\nu = 0 \Rightarrow MPP$$
$$\nu = \infty \Rightarrow GSP$$

Low rank models:Do they oversmooth?

Mean square continuity and differentiability at s₀ of a process w(·) requires existence of some vector ∇w(s₀) with,

$$\lim_{\boldsymbol{s}\to\boldsymbol{s}_0} E\left(w(\boldsymbol{s})-w(\boldsymbol{s}_0)\right)^2 = 0$$
$$\lim_{h\to 0} E\left(\frac{w(\boldsymbol{s}_0+h\boldsymbol{u})-w(\boldsymbol{s}_0)}{h}-\langle \nabla w(\boldsymbol{s}_0),\boldsymbol{u}\rangle\right)^2 = 0$$

Low rank models:Do they oversmooth?

Mean square continuity and differentiability at s₀ of a process w(·) requires existence of some vector ∇w(s₀) with,

$$\lim_{\boldsymbol{s}\to\boldsymbol{s}_0} E\left(w(\boldsymbol{s})-w(\boldsymbol{s}_0)\right)^2 = 0$$
$$\lim_{\boldsymbol{h}\to\boldsymbol{0}} E\left(\frac{w(\boldsymbol{s}_0+\boldsymbol{h}\boldsymbol{u})-w(\boldsymbol{s}_0)}{\boldsymbol{h}}-\langle\nabla w(\boldsymbol{s}_0),\boldsymbol{u}\rangle\right)^2 = 0$$

Theorem on Smoothness (Guhaniyogi et al., 2012)

With matern correlation function having smoothness m,

- Predictive Process model is infinitely mean square differentiable except at the set of knot points S^{*}.
- 2 Modified Predictive Process is not mean square continuous at any point.
- **3** Tapered Predictive Process is $\min(m,k)$ -times mean square differentiable except at \mathscr{S}^* , where $C_{\nu}(\cdot)$ is k-times differentiable.

	True	Non-spatial	PP	Modified PP	Tapered PP
Bo	8 25	8 26 (8 15 8 27)	10.83 (9.29 12.60)	9 21 (7 83 10 97)	8 43 (7 20 9 64)
2	0.20	0.20 (0.20 ; 0.27)	10:00 (0:20 , 12:00)	5.22 (1.00 ; 20.57)	
σ^2	6	-	8.95 (2.68 , 15.81)	5.07 (3.44 , 7.32)	4.06 (3.12 , 5.91)
τ^2	0.5	3.59 (3.30 , 3.88)	2.20 (2.02 , 2.40)	.73 (.39 , 1.17)	0.43 (0.34 , 0.55)
ϕ	4	-	2.78 (2.32 , 3.62)	2.73 (2.23 , 5.38)	4.09 (2.61 , 5.77)
G	-	3959.95	2397.21	347.16	146.72
Р	-	3943.83	2502.70	1471.05	858.04
D	-	7903.79	4899.91	1818.22	1004.76
PD	-	1.95	31.79	731.42	1010.30
DIC	-	2509.32	2000.50	1628.88	1370.06

< ロ > < 回 > < 回 > < 回 > < 回 > <</p>

Ξ.