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Random Projected Gaussian Process: Banerjee et al., 2013

@ We have already shown one technique to select knots.
However it was computationally cumbersome.
What if we completely avoid the choice of knots.
w = (w(s1),..., w(s,))’, ® is an n* x n random matrix.
w(s) = E[w(s)|®w] = c(s)'®' (®Co®') 1dw.

c(s) = (C(s,s1,0),...,C(s,sn,0)).
&(s) ™ N(0, C(s, s, 0) — c(s) ' (®Cod')Ldc(s)).

y(s) = x(s)B + w(s) +&(s) + €(s), e(s) ~ N(0,7?)

@ They showed that the covariance matrix is better conditioned
under this idea than modified predictive process.

@ They have also proposed some ideas to design the matrix ®
rather than randomly selecting entries of ®.
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Data Motivation: Isomap Face Dataset (http:

//web.mit.edu/cocosci/isomap/datasets.html)

@ 698 images of an
artificial face.

@ 2-dim projection of

each image:
64 x 64 = 4096 pixels
in size.

@ Horizontal pose angle
of each image is
given.
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Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels.

@ Horizontal pose angle
of each image is
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Data Motivation: Isomap Face Dataset (http:

//web.mit.edu/cocosci/isomap/datasets.html)

Scientific Question & Challenges

Predict horizontal pose angle of an image based on image pixels.
Challenges:

» Complex nonlinear relationship between the response (pose
angle) and predictors.

» Predictors are lying on a complex nonlinear manifold.

> large number of predictors and large sample size.

@ Horizontal pose angle
of each image is
given.
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State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

A Unsatisfactory predictive uncertainty.
Bl No theory justification.

@ Not scalable with large sample size and predictiors




State-of-the-art approaches: unsatisfactory performance

Issues with existing approaches

A Unsatisfactory predictive uncertainty.
Bl No theory justification.

@ Not scalable with large sample size and predictiors

@ Tree based approaches: CART (Breiman, 1984), Random
Forest (Breiman, 2001) (A, B, C), BART (Chipman et al.,
2008) (B, C), Treed GP (Gramacy et al., 2007) (B, C).

@ Two stage approaches: clustering high dimensional predictors
(Belkin et al., 2003) followed by independent model fitting in
each cluster (A, B).

© Model Based Full Bayesian approaches: GP latent variable
models (Lawrence, 2005), PCA for mixture models (Chen et
al., 2010) (C).
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Compressed Gaussian Process

o W= ((V;)), W~ N(0,1): Choice motivated by the popular
compressed sensing literature (Ji et al., 20018).
ex=z+0,zc . H, 06~ N(O,Tzlp).

Compressed GP model

y = n(Wx)+e e~ N(0,0%)
u()o® ~ GP(0,02K(:, -, )
K(xi,xj,¢) = exp(—9¢|lxi — x;|?)

Model fitting requires n x n matrix inversion at each MCMC.
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Strategy when sample size (n) is large

Large sample approximation of CGP

y = i(Wx) + e,

fi(-) — approximation of u(-).
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Strategy when sample size (n) is large

Large sample approximation of CGP

y = i(Wx) + ¢,

fi(-) — approximation of u(-).
@ /i can be chosen from the rich class of low rank Gaussian
processes.
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Strategy when sample size (n) is large

Large sample approximation of CGP

y = i(Wx) + e,

fi(-) — approximation of u(-).
@ /i can be chosen from the rich class of low rank Gaussian
processes.
e Following Banerjee et al. (2013) we choose

i(Wx) = E(u(Wx)|[®u(WX))

® is an n* x n matrix, ®;; ~ N(0,1).
@ Each MCMC iteration requires n* x n* matrix inversion.

@ n* << n implies havoc computational gain.



General Theoretical Setup: Guhaniyogi et al., 2013

@ True regression function pg € €°

Class of regression functions fitted to the data

p metric ball of radius €, around the truth

° P(M7M0)2 = %Z?:l(ﬂ(xi) - Mo(Xi))2
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General Theoretical Setup: Guhaniyogi et al., 2013

@ True regression function pg € €°

Class of regression functions fitted to the data

p metric ball of radius €, around the truth

° P(M7M0)2 = %Z?:l(ﬂ(xi) - Mo(Xi))2

Under what condition it shrinks fast enough?

Ordinary GP regression shrinks at the rate n=5/(25p),
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Main Results

A is a d dimensional " compact sub-manifold of ZP”.
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Main Results

A is a d dimensional " compact sub-manifold of ZP”.

T: %P — %™, m << ps.t. restriction of T in .# isa ¢"
diffeomorphism onto its image.

s<min{2,n —1,n—1}.

Then e, = n=5/(2std) |og(n)d+1.

@ T(x) = Wx is both dimension reducing map and a
diffeomorphism onto its image as w.p. 1 — ¢,

(L= k) o lxi = xill < I T(xi) = T < (L4 R)y /= lixi = x|
p p

e Additionally noise reduction is achieved through T.
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Isomap face data analysis: Set up

@ 20 random splitting of the data into 648 training and 50 test
samples.

@ response is standardized to have unit variance.

@ To deal with a more challenging case, N(0,72) noise is added
to each of 4096 pixels to form noisy predictors.

@ CGP model for large n is fitted to the data.

@ Predictive inference is carried out with summary measures
mean squared prediction error (MSPE), coverage and length
of 95% predictive interval.
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Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)

Distributed Supervised Learning (DSL)
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Isomap face data analysis: Competitors

Frequentist Competitors

Compressed Random Forest (CRF)

Distributed Supervised Learning (DSL)

Bayesian Competitors
GP
2GP

Compressed Bayesian Addi-
tive Regression Tree (CBART)

@ Compress high dimensional predictors and apply RF and
BART on compressed predictors.
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Computation Time (in seconds): CGP is the fastest
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Mean Squared Prediction error (MSPE): Compressed

methods perform best

Y1, ..., Yk — observed, yf, ...,y — predicted

x|

k
1 *
MSPE = 2> (yi — yi)?
i=1

T CGP GP CBART CRF DSL 2GP
0.03 | 0.140.050 | 0.920.074 | 0.060.005 | 0.050.007 | 0.680.023 | 0.950.062
0.06 | 0.09.006 | 0.790.056 | 0.090.007 | 0.090.008 | 0.750.015 | 0.940.041
0.10 | 0.129.008 | 0.830.077 | 0.120.005 | 0.130.011 | 0.540.014 | 0.920.,013

Table: MSPE and standard error (computed using 20 samples) for all the competitors
over 50 replications
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Coverage and Length of 95% Predictive Intervals
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Figure: coverage and length of 95% Pl's for CGP, GP, CBART, CRF. 95% Cl’s are
shown at each point
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Gaussian process with compactly supported correlation

functions

@ Under Matern correlation kernel, the correlation between two
points is positive even when they are sufficiently far apart.

@ In practice, one may safely assume that two observations are
not correlated to each other if they are sufficiently far apart.

@ How to impose that restriction?

e What if we define a correlation kernel C,(s,s’) which is 0
when ||s — §'|| > v.

@ These are known as tapered correlation kernels.

e Wendland (1995) proposed tapered correlation kernels and
later Gneting (2002) formalized the concept.
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Gaussian process with compactly supported correlation

functions

e Kaufman et al. (2009) proposed
y(s) = x(s)B + w(s)n(s) + €(s), (s) ~ N(0,72).

o w(:) ~ GP(0, Co(:,-)). n(-) ~ GP(0, G, ).

@ The covariance matrix of y = (y(s1), ..., ¥(s5))’ becomes
sparse.

@ Use sparse matrix solvers to efficiently compute inverse.

@ It was proved theoretically that this model will asymptotically
provide the same inference as the full Gaussian process model
without tapering if the tapering range v is chosen properly.

@ In practice, we do not know how to choose v.

@ v acts as a tuning parameter that is adjusted based on the
available computational resources.
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Tapered Predictive Process

Recall the model for modified predictive process

y(s) = x(s)' B+ (s) + &s) + €(s)

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

g() ~ GP(07 Ctap(517$2))
Ctap(sla52;0) = CE(SLSQ;B)CV(Hsl - S2H) )

o C,(||s1 — s2]|) is a compactly supported correlation function
on [0, v].



Tapered Predictive Process

Recall the model for modified predictive process

y(s) = x(s)' B+ (s) + &s) + €(s)

Tapered adjustment (Guhaniyogi et al., 2012; Sang et al., 2012)

g() ~ GP(07 Ctap(517$2))
Ctap(sla52;0) = CE(SLSQ;B)CV(Hsl - S2H) )

o C,(||s1 — s2]|) is a compactly supported correlation function
on [0, v].

= 0= MPP
v = oo= GSP



Low rank models:Do they oversmooth?

@ Mean square continuity and differentiability at so of a process
w(-) requires existence of some vector Vw(sg) with,

Jim E(w(s) - w(so))? =0

2
im E (W(SO ) = 0) _ (Gu(so), u)) o

h—0
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Low rank models:Do they oversmooth?

@ Mean square continuity and differentiability at so of a process
w(-) requires existence of some vector Vw(sg) with,

lim E (w(s) - w(so))? =0

S—S|

lim £ (W(SO T hu) = w0 (g(s), u>)2 —0

h—0 h

Theorem on Smoothness (Guhaniyogi et al., 2012)

With matern correlation function having smoothness m,

Predictive Process model is infinitely mean square
differentiable except at the set of knot points .#*.

Modified Predictive Process is not mean square continuous at
any point.

Tapered Predictive Process is min(m,k)-times mean square
differentiable except at .*, where C,(-) is k-times
differentiable.
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True Non-spatial PP Modified PP Tapered PP

Bo 825 826 (8.15,827) 1083 (9.29,12.60) 9.21 (7.83,10.97) 843 (7.20 , 9.64)

o? 6 - 8.95 (2.68 , 15.81) 507 (3.44,7.32)  4.06 (3.12,5.91)
72 05  3.59(3.30, 3.88) 2.20 (2.02 , 2.40) 73 (.39, 1.17) 0.43 (0.34 , 0.55)
¢ 4 - 2.78 (2.32 , 3.62) 273 (2.23,538)  4.09 (2.61,5.77)
G - 3959.95 2397.21 347.16 146.72
P - 3043.83 2502.70 1471.05 858.04
D = 7903.79 4899.91 1818.22 1004.76
PD - 1.95 31.79 731.42 1010.30
DIC = 2509.32 2000.50 1628.88 1370.06
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