Advanced Bayesian Computation Weeks 6 \& 7

Rajarshi Guhaniyogi Winter 2018

February 23, 2018

Linear Model Co-regionalization

- Let $\boldsymbol{A}=\left(\left(a_{i j}\right)\right)_{i, j=1}^{m}$, such that the entries above lower triangle are all zero.
- Assign $a_{i j} \sim N(0,1)$ and $\log \left(a_{i i}\right) \sim N(0,1)$ for $i>j$.
- Assume $v_{k}(\boldsymbol{s}) \sim G P\left(0, C_{1, \phi_{k}}\right)$ independently.
- ϕ_{k} 's are assigned uniform priors as before.
- It is customarily assumed that $\boldsymbol{\Psi}=\operatorname{diag}\left(\psi_{1}, \ldots, \psi_{m}\right)$,
$\psi_{1}, \ldots, \psi_{m}>0$.
- $\psi_{k} \sim \operatorname{IG}(a, b)$ a-priori, for $k=1, \ldots, m$.
- Entries of \boldsymbol{B} are assigned normal priors.

Multivariate Matern

- Need to define $\operatorname{Cov}\left(\boldsymbol{w}(\boldsymbol{s}), \boldsymbol{w}\left(\boldsymbol{s}^{\prime}\right)\right)$, where $h=\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|$.
- Amounts to defining $\operatorname{Cov}\left(w_{k}(\boldsymbol{s}), w_{k}\left(\boldsymbol{s}^{\prime}\right)\right)$ and $\operatorname{Cov}\left(w_{k}(\boldsymbol{s}), w_{j}\left(\boldsymbol{s}^{\prime}\right)\right)$.
- $\operatorname{Cov}\left(w_{k}(\boldsymbol{s}), w_{k}\left(\boldsymbol{s}^{\prime}\right)\right)=M\left(h \mid \nu_{k}, a_{k}\right)$,
$\operatorname{Cov}\left(w_{k}(\boldsymbol{s}), w_{j}\left(\boldsymbol{s}^{\prime}\right)\right)=\alpha_{k j} M\left(h \mid \nu_{k j}, a_{k j}\right)$.
- Parsimonious Matern kernel defines $a_{k j}=a_{k}=a$ and $\nu_{k j}=\frac{\nu_{k}+\nu_{j}}{2}$.
- $\alpha_{k j}=\zeta_{k j} \lambda_{k} \lambda_{j}, \lambda_{k}, \lambda_{j}>0$
- $\zeta_{k j}=\eta_{k j} \frac{\Gamma\left(\nu_{k}+d / 2\right)^{1 / 2}}{\Gamma\left(\nu_{k}\right)^{1 / 2}} \frac{\Gamma\left(\nu_{j}+d / 2\right)^{1 / 2}}{\Gamma\left(\nu_{j}\right)^{1 / 2}} \frac{\Gamma\left(\left(\nu_{k}+\nu_{j}\right) / 2\right)}{\Gamma\left(\left(\nu_{k}+\nu_{j}\right) / 2+d / 2\right)}$.
- $\eta_{k k}=1$ and $\left(\left(\eta_{k j}\right)\right)_{k, j=1}^{m}$ is non-negative definite.
- This ensures a valid multivariate cross covariance matrix.

Gaussian process High Dimensional Regression

- Consider modeling the situation $y=f(\boldsymbol{x})+\epsilon$, where $\boldsymbol{x} \in \mathbb{R}^{p}$ where p is large.
- We have already seen in the theoretical study of Gaussian process that the convergence rate of the fitted function to the truth is $n^{-s /(2 s+p)}(\log (n))^{c}$, where c is a constant, s is the smoothness of the true surface, p is the number of predictors and n is the sample size.
- When p is large, convergence rate suffers a lot.
- We land in a hopeless situation (similar to the linear regression case) where we need to add some assumption in the true regression model to be able to recover it.
- Assumption: The regression function is affected only by a few covariates.
- Alternatively, one assumes that the covariates lie in a lower dimensional noisy manifold.

Variable selection in Gaussian process

- Variable selection in Gaussian process is a very hard and unsolved problem.
- One idea was to employ a variant of the squared exponential covariance kernel.
- They define the covariance kernel
$C_{\sigma^{2}, \phi, \lambda}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\sigma^{2} \exp \left(-\sum_{j=1}^{p} \lambda_{j}\left(x_{j}-x_{j}^{\prime}\right)^{2}\right)$.
- Use some penalty to select important λ_{j} 's.
- This is known as the automatic relevance determination (ARD).
- Full Bayesian updating of λ_{j} 's by adding a spike and slab prior and computing the posterior does not seems to work very well.

Big data, large sample size n and Gaussian Process

- In many machine learning or environmental applications number of predictors is small.
- Sample size is massive.
- Important data applications.
- It is a wide area with different strategies applied to different models.
- We will see a few strategies.

- Biomass is the biological material in a living or recently dead organism.
- Prediction of forest biomass is important to understand current carbon stock and flux, bio-feedstock for emerging bio-economies, and impact of deforestation.
- Forest Inventory and Analysis (FIA) under USDA collects data on Biomass regurlarly.

Spatio-temporal Modeling: Environmental Science

Depth of water table data between 1935 to 2013.

(a) High Plain Aquifer

(b) Depth of water table

Modeling of spatio-temporal trend of water table

Problem with Gaussian processes with big data

- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ are observed data and $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}$ are the corresponding predictors.
- Let $\boldsymbol{X}=\left[\boldsymbol{x}_{1}: \cdots: \boldsymbol{x}_{n}\right]^{\prime}$ be the predictor matrix.
- Model: $\boldsymbol{y} \sim N\left(\mu \mathbf{1}_{n}, \boldsymbol{C}_{\boldsymbol{\theta}}+\tau^{2} \boldsymbol{I}\right)$.
- Estimating parameters $\boldsymbol{\theta}$ from the likelihood

$$
-\frac{1}{2} \log \left(\operatorname{det}\left(\boldsymbol{C}_{\boldsymbol{\theta}}+\tau^{2} \boldsymbol{I}\right)\right)-\frac{1}{2}\left(\boldsymbol{y}-\mu \mathbf{1}_{n}\right)^{\prime}\left(\boldsymbol{C}_{\boldsymbol{\theta}}+\tau^{2} \boldsymbol{I}\right)^{-1}\left(\boldsymbol{y}-\mu \mathbf{1}_{n}\right)
$$

Challenges

- Store $\boldsymbol{C}_{\boldsymbol{\theta}}+\tau^{2}$ I
- Compute $\operatorname{Chol}\left(\boldsymbol{C}_{\boldsymbol{\theta}}+\tau^{2} \boldsymbol{I}\right)=\boldsymbol{L} \boldsymbol{L}^{\prime}$.
- Approximate $\boldsymbol{C}_{\boldsymbol{\theta}} \approx \boldsymbol{B}_{\boldsymbol{\theta}} \boldsymbol{C}_{\boldsymbol{\theta}}^{*-1} \boldsymbol{B}_{\boldsymbol{\theta}}^{\prime}+\boldsymbol{D}_{\boldsymbol{\theta}}$
- $\boldsymbol{B}_{\boldsymbol{\theta}}$ is the $n \times r$ spatial basis matrix $r \ll n$.
- $\boldsymbol{C}_{\boldsymbol{\theta}}^{*}$ is an $r \times r$ spatial covariance matrix.
- $\boldsymbol{D}_{\boldsymbol{\theta}}$ is either sparse or diagonal.
- Different choices of basis functions leads to different low rank models.
- The computational complexity $O\left(r^{3}+n r^{2}\right) \leq O\left(n^{3}\right)$.

Kernel Convolution

- Use a finite basis representation to approximate a Gaussian process.
- $f(\boldsymbol{x})=\int K(\boldsymbol{x}-\boldsymbol{z}, \boldsymbol{\theta}) d u(\boldsymbol{z})$, where $u(\boldsymbol{z})$ is a white noise process.
- This is called Kernel convolution of white noise processes and is widely used in environmental applications.
- An approximation of the $f(\boldsymbol{x})$ by a finite sum is given by

$$
f(\boldsymbol{x}) \approx \sum_{j=1}^{J} K\left(\boldsymbol{x}-\boldsymbol{z}_{j}^{*}, \boldsymbol{\theta}\right) u_{j}
$$

$z_{1}^{*}, \ldots, z_{J}^{*}$ are "knot" points in \mathbb{R}^{p} and $u_{1}, \ldots, u_{J} \sim N\left(0, \sigma^{2}\right)$.

- $J \ll n$, i.e. number knots is much lesser than the sample size.
- Choice of $K(\cdot, \boldsymbol{\theta})$ is important for the method to work.
- In the spatial context this idea was proposed in 2001 by David Higdon.

Kernel Convolution

- Model

$$
y=\mu+\sum_{j=1}^{J} K\left(\boldsymbol{x}-\boldsymbol{z}_{j}^{*}, \boldsymbol{\theta}\right) u_{j}+\epsilon, \epsilon \sim N\left(0, \tau^{2}\right)
$$

- With data $\left(y_{1}, \boldsymbol{x}_{1}\right), \ldots,\left(y_{n}, \boldsymbol{x}_{n}\right)$, the data equation is given by

$$
\boldsymbol{y}=\mu \mathbf{1}_{n}+K \boldsymbol{u}+\boldsymbol{\epsilon}, \boldsymbol{\epsilon} \sim N\left(0, \tau^{2} \boldsymbol{I}\right)
$$

where the i th row of K is given by
$\left(K\left(x_{i}-z_{1}^{*}, \theta\right), \ldots, K\left(x_{i}-z_{J}^{*}, \theta\right)\right)^{\prime}$.

- $\boldsymbol{u}=\left(u_{1}, \ldots, u_{J}\right)^{\prime} \sim N\left(0 \sigma^{2} \boldsymbol{I}\right)$.
- Marginalizing over \boldsymbol{u}, the likelihood is $N\left(\boldsymbol{y} \mid \mu \mathbf{1}_{n}, \sigma^{2} \boldsymbol{K} \boldsymbol{K}^{\prime}+\tau^{2} \boldsymbol{I}\right)$.
- More generally, if one assumes u_{1}, \ldots, u_{J} are correlated and $\boldsymbol{u} \sim N\left(0, \sigma^{2} \boldsymbol{D}\right)$ then the likelihood is $N\left(\boldsymbol{y} \mid \mu \mathbf{1}_{n}, \sigma^{2} \boldsymbol{K} \boldsymbol{D} \boldsymbol{K}^{\prime}+\tau^{2} \boldsymbol{I}\right)$.

$$
\begin{aligned}
p\left(\mu, \sigma^{2}, \tau^{2}\right) & \propto N\left(\left(\boldsymbol{y} \mid \mu \mathbf{1}_{n}, \sigma^{2} \boldsymbol{K} \boldsymbol{D} \boldsymbol{K}^{\prime}+\tau^{2} \boldsymbol{I}\right) \times p(\mu)\right. \\
& \times p\left(\tau^{2}\right) \times p\left(\sigma^{2}\right) .
\end{aligned}
$$

- K is a $n \times J$ matrix.
- Inverting the $n \times n$ matrix $\boldsymbol{H}=\sigma^{2} \boldsymbol{K} \boldsymbol{D} \boldsymbol{K}^{\prime}+\tau^{2} \boldsymbol{I}$ can be made easy with simple trick.
- This technique is called Sherman-Woodbury-Morrison matrix identity.
- The main computational cost comes from inverting a $J \times J$ matrix.

Posterior predictive distribution and estimation of regression function

- Posterior distribution of \boldsymbol{u} can be obtained easily.
- Note that $p(\boldsymbol{u} \mid-) \propto N\left(\boldsymbol{y} \mid \mu \mathbf{1}_{n}+\boldsymbol{K} \boldsymbol{u}, \tau^{2} \boldsymbol{I}\right) \times N\left(\boldsymbol{u} \mid \mathbf{0}, \sigma^{2} \boldsymbol{D}\right)$.
- $\boldsymbol{u} \mid-$ follows a multivariate normal distribution.
- Prediction at new predictor \boldsymbol{x} can be obtained as before.
- $y \sim N\left(\mu+\sum_{j=1}^{J} K\left(\boldsymbol{x}-\boldsymbol{z}_{j}^{*}, \boldsymbol{\theta}\right) u_{j}, \tau^{2}\right)$. Draw posterior predictive samples from this distribution corresponding to every posterior sample of the parameters.

Choice of the kernel function

- Choice of the kernel function plays important role in the kernel convolution method.
- Popular choices are radial basis functions, wavelet basis functions etc.
- There can be drastic differences with different choices of the basis function.
- Can the kernel choice be automated?

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots:

$$
\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right) .
$$

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots: $\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right)$.
- $\boldsymbol{R}^{*}=\left[\rho\left(\boldsymbol{s}_{i}^{*}, \boldsymbol{s}_{j}^{*} ; \boldsymbol{\phi}\right)\right]$ is an $n^{*} \times n^{*}$.

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots: $\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right)$.
- $\boldsymbol{R}^{*}=\left[\rho\left(\boldsymbol{s}_{i}^{*}, \boldsymbol{s}_{j}^{*} ; \boldsymbol{\phi}\right)\right]$ is an $n^{*} \times n^{*}$.
- Correlation between $w(\boldsymbol{s})$ and $\boldsymbol{w}^{*}: \boldsymbol{r}(\boldsymbol{s})=\left[\rho\left(\boldsymbol{s}, \boldsymbol{s}_{i}^{*} ; \boldsymbol{\phi}\right)\right]$.

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots:
$\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right)$.
- $\boldsymbol{R}^{*}=\left[\rho\left(\boldsymbol{s}_{i}^{*}, \boldsymbol{s}_{j}^{*} ; \boldsymbol{\phi}\right)\right]$ is an $n^{*} \times n^{*}$.
- Correlation between $w(\boldsymbol{s})$ and $\boldsymbol{w}^{*}: \boldsymbol{r}(\boldsymbol{s})=\left[\rho\left(\boldsymbol{s}, \boldsymbol{s}_{i}^{*} ; \boldsymbol{\phi}\right)\right]$.
- predictive process:

$$
\tilde{w}(\boldsymbol{s})=\mathrm{E}\left[w(\boldsymbol{s}) \mid \boldsymbol{w}^{*}\right]=\boldsymbol{r}(\boldsymbol{s})^{\prime} \boldsymbol{R}^{*-1} \boldsymbol{w}^{*}
$$

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots:

$$
\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right) .
$$

- $\boldsymbol{R}^{*}=\left[\rho\left(\boldsymbol{s}_{i}^{*}, \boldsymbol{s}_{j}^{*} ; \boldsymbol{\phi}\right)\right]$ is an $n^{*} \times n^{*}$.
- Correlation between $w(\boldsymbol{s})$ and $\boldsymbol{w}^{*}: \boldsymbol{r}(\boldsymbol{s})=\left[\rho\left(\boldsymbol{s}, \boldsymbol{s}_{i}^{*} ; \boldsymbol{\phi}\right)\right]$.
- predictive process: $\tilde{w}(\boldsymbol{s})=\mathrm{E}\left[w(\boldsymbol{s}) \mid \boldsymbol{w}^{*}\right]=\boldsymbol{r}(\boldsymbol{s})^{\prime} \boldsymbol{R}^{*-1} \boldsymbol{w}^{*}$

predictive process model

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\epsilon(\boldsymbol{s}), \epsilon(\boldsymbol{s}) \sim N\left(0, \tau^{2}\right)
$$

Predictive Process Model (Banerjee et al., 2008)/Sparse Gaussian Process

- Consider a set of n^{*} knots $\mathscr{S}^{*}=\left\{\boldsymbol{s}_{1}^{*}, \ldots, \boldsymbol{s}_{n^{*}}^{*}\right\}$ with $n^{*} \ll n$.
- Process realization over knots:

$$
\boldsymbol{w}^{*}=\left(w\left(\boldsymbol{s}_{1}\right), \ldots, w\left(\boldsymbol{s}_{n^{*}}^{*}\right)\right)^{\prime} \sim N\left(\mathbf{0}, \sigma^{2} \boldsymbol{R}^{*}\right)
$$

Dimension reduction comes from applying
Sherman-Woodbury-Morrison matrix identity
Only inverting an $n^{*} \times n^{*}$ matrix inversion is required at each stage of MCMC.
predictive process model

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\epsilon(\boldsymbol{s}), \epsilon(\boldsymbol{s}) \sim N\left(0, \tau^{2}\right)
$$

Issues with PP: Overestimated Nugget \& Smoothed Spatial Surface

Issues with PP: Overestimated Nugget \& Smoothed Spatial Surface

True Spatial Surface

Predictive Process Surface

Issues with PP: Overestimated Nugget \& Smoothed

 Spatial Surface

Quantified underestimation

$$
\begin{gathered}
\operatorname{var}(w(\boldsymbol{s}))=\operatorname{var}(\tilde{w}(\boldsymbol{s}))+\operatorname{var}(w(\boldsymbol{s})-\tilde{w}(\boldsymbol{s})) \geq \operatorname{var}(\tilde{w}(\boldsymbol{s})) \\
\tilde{\epsilon}(\boldsymbol{s})=w(\boldsymbol{s})-\tilde{w}(\boldsymbol{s}) \sim G P\left(0, C_{\tilde{\epsilon}}\left(\boldsymbol{s}_{1}, \boldsymbol{s}_{2} ; \boldsymbol{\theta}\right)\right)
\end{gathered}
$$

Model Based Bias Adjustments

- TPP slide

$$
y(\boldsymbol{s})=\boldsymbol{x}(\boldsymbol{s})^{\prime} \boldsymbol{\beta}+\tilde{w}(\boldsymbol{s})+\tilde{\epsilon}(\boldsymbol{s})+\epsilon(\boldsymbol{s})
$$

Modified predictive process (Finley et al., 2009)

$$
\tilde{\epsilon}\left(\boldsymbol{s}_{i}\right) \stackrel{\text { ind }}{\sim} N\left(0, \delta^{2}\left(\boldsymbol{s}_{i} ; \boldsymbol{\theta}\right)\right) ; \quad \delta^{2}(\boldsymbol{s} ; \boldsymbol{\theta})=C_{\tilde{\epsilon}}(\boldsymbol{s}, \boldsymbol{s} ; \boldsymbol{\theta}) .
$$

Results

	True	Non-spatial	PP	Modified PP
β_{0}	8.25	$8.26(8.15,8.27)$	$10.83(9.29,12.60)$	$9.21(7.83,10.97)$
σ^{2}	6	-	$8.95(2.68,15.81)$	$5.07(3.44,7.32)$
τ^{2}	0.5	$3.59(3.30,3.88)$	$2.20(2.02,2.40)$	$.73(.39,1.17)$
ϕ	4	-	$2.78(2.32,3.62)$	$2.73(2.23,5.38)$
G	-	3959.95	2397.21	347.16
P	-	3943.83	2502.70	1471.05
D	-	7903.79	4899.91	1818.22
p_{D}	-	1.95	31.79	731.42
DIC	-	2509.32	2000.50	1628.88

Knots are Learning from The Data

- Observed data \circ drawn from normal distribution with varying frequency sine function mean and .01 variance
- knots are assigned $U(0,1)$ prior.

+ naive knot starting locations

- posterior predictive means of 100 new locations

Knot Selection in Predictive Process, Guhaniyogi et al., 2012

Hierarchical adaptive predictive process model with random knots

$$
\begin{gathered}
{\left[\boldsymbol{\beta}, \boldsymbol{\theta}_{1}, \mathscr{S}^{*}, \boldsymbol{\theta}_{2} \mid \boldsymbol{y}, \mathscr{S}, n^{*}\right] \propto \times\left[\boldsymbol{\theta}_{1}\right] \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \Sigma_{\beta}\right)} \\
\times N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \Sigma_{\boldsymbol{y}}\left(\mathscr{S}^{*}, \mathscr{S} ; \boldsymbol{\theta}_{1}\right)\right) .
\end{gathered}
$$

Process parameter in data likelihood

Knot Selection in Predictive Process, Guhaniyogi et al., 2012

Hierarchical adaptive predictive process model with random knots

$$
\begin{aligned}
& {\left[\boldsymbol{\beta}, \boldsymbol{\theta}_{1}, \mathscr{S}^{*}, \boldsymbol{\theta}_{2} \mid \boldsymbol{y}, \mathscr{S}, n^{*}\right] \times\left[\boldsymbol{\theta}_{2}\right] \times\left[\boldsymbol{\theta}_{1}\right] \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \Sigma_{\beta}\right)} \\
& \times\left[\mathscr{S}^{*} \mid \boldsymbol{\theta}_{2}\right] \times N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \Sigma_{\boldsymbol{y}}\left(\mathscr{S}^{*}, \mathscr{S} ; \boldsymbol{\theta}_{1}\right)\right) .
\end{aligned}
$$Process parameter in data likelihood

Knot Selection in Predictive Process, Guhaniyogi et al., 2012

Hierarchical adaptive predictive process model with random knots

$$
\begin{aligned}
& {\left[\boldsymbol{\beta}, \boldsymbol{\theta}_{1}, \mathscr{S}^{*}, \boldsymbol{\theta}_{2} \mid \boldsymbol{y}, \mathscr{S}, n^{*}\right] \propto\left[\boldsymbol{\theta}_{2}\right] \times\left[\boldsymbol{\theta}_{1}\right] \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \Sigma_{\beta}\right)} \\
& \quad \times\left[\mathscr{S}^{*} \mid \boldsymbol{\theta}_{2}\right] \times N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \Sigma_{\boldsymbol{y}}\left(\mathscr{S}^{*}, \mathscr{S} ; \boldsymbol{\theta}_{1}\right)\right) .
\end{aligned}
$$Process parameter in data likelihood

Parameters in the intensity surface for the knots.

Knot Selection in Predictive Process, Guhaniyogi et al., 2012

Hierarchical adaptive predictive process model with random knots

$$
\begin{aligned}
& {\left[\boldsymbol{\beta}, \boldsymbol{\theta}_{1}, \mathscr{S}^{*}, \boldsymbol{\theta}_{2} \mid \boldsymbol{y}, \mathscr{S}, n^{*}\right] \propto\left[\boldsymbol{\theta}_{2}\right] \times\left[\boldsymbol{\theta}_{1}\right] \times N\left(\boldsymbol{\beta} \mid \boldsymbol{\mu}_{\beta}, \Sigma_{\beta}\right)} \\
& \quad \times\left[\mathscr{S}^{*} \mid \boldsymbol{\theta}_{2}\right] \times N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \Sigma_{\boldsymbol{y}}\left(\mathscr{S}^{*}, \mathscr{S} ; \boldsymbol{\theta}_{1}\right)\right) .
\end{aligned}
$$

Process parameter in data likelihood
Parameters in the intensity surface for the knots.

- Idea of modeling knots is applicable to any knot based low rank model.

Strategies to Model Knots

Modelling the intensity surface for knots

$$
\left[\mathscr{S}^{*} \mid \eta_{D}, n^{*}\right]=\prod_{i=1}^{n^{*}} \frac{\eta\left(\boldsymbol{s}_{i}^{*}\right)}{\int_{D} \eta(\boldsymbol{s}) d \boldsymbol{s}}
$$

Strategies to Model Knots

Modelling the intensity surface for knots

$$
\left[\mathscr{S}^{*} \mid \eta_{D}, n^{*}\right]=\prod_{i=1}^{n^{*}} \frac{\eta\left(\boldsymbol{s}_{i}^{*}\right)}{\int_{D} \eta(\boldsymbol{s}) d \boldsymbol{s}}
$$

- Parametric option:

$$
\log \eta\left(\boldsymbol{s} ; \boldsymbol{\theta}_{2}\right)=\frac{1}{m} \sum_{j=1}^{m} N_{2 D}\left(\boldsymbol{s} \mid \boldsymbol{u}_{j}, \Sigma_{\eta}\right)
$$

Strategies to Model Knots

Modelling the intensity surface for knots

$$
\left[\mathscr{S}^{*} \mid \eta_{D}, n^{*}\right]=\prod_{i=1}^{n^{*}} \frac{\eta\left(\boldsymbol{s}_{i}^{*}\right)}{\int_{D} \eta(\boldsymbol{s}) d \boldsymbol{s}}
$$

- Parametric option:

$$
\log \eta\left(\boldsymbol{s} ; \boldsymbol{\theta}_{2}\right)=\frac{1}{m} \sum_{j=1}^{m} N_{2 D}\left(\boldsymbol{s} \mid \boldsymbol{u}_{j}, \Sigma_{\eta}\right)
$$

- A log-Gaussian approach:

$$
\eta(\boldsymbol{s})=\exp \left\{\alpha w_{2}(\boldsymbol{s})\right\} ; w_{2}(\boldsymbol{s}) \sim G P\left(0, \rho_{2}\left(\cdot ; \phi_{2}\right)\right),
$$

Strategies to Model Knots

Modelling the intensity surface for knots

$$
\left[\mathscr{S}^{*} \mid \eta_{D}, n^{*}\right]=\prod_{i=1}^{n^{*}} \frac{\eta\left(\boldsymbol{s}_{i}^{*}\right)}{\int_{D} \eta(\boldsymbol{s}) d \boldsymbol{s}}
$$

- Parametric option:

$$
\log \eta\left(\boldsymbol{s} ; \boldsymbol{\theta}_{2}\right)=\frac{1}{m} \sum_{j=1}^{m} N_{2 D}\left(\boldsymbol{s} \mid \boldsymbol{u}_{j}, \Sigma_{\eta}\right)
$$

- A log-Gaussian approach:

$$
\eta(\boldsymbol{s})=\exp \left\{\alpha w_{2}(\boldsymbol{s})\right\} ; w_{2}(\boldsymbol{s}) \sim G P\left(0, \rho_{2}\left(\cdot ; \phi_{2}\right)\right),
$$

- Any other random measure on $\left[\mathscr{S}^{*} \mid n^{*}\right]$.

Estimated Spatial Surface: PP vs. APP

data locations

APP: residual surface

Knot density

PP: residual surface

Motivating Dataset on Soil Nutrients

Sum of base cations (SBC)

Sum of nitrogen (SN)

Correlations Between Soil Nutrients are Space Varying

sub-domain correlation among the soil nutrient outcomes
$\rho_{P, S B C}$

Multivariate Spatial Modeling

Figure:Soil Nutrients

$$
Y(s)=\mu(s)+W(s)+\epsilon(s)
$$Multivariate responseFixed effectsMultivariate spatial function

Multivariate error

$$
\boldsymbol{Y}(\boldsymbol{s})=\left(y_{1}(\boldsymbol{s}), \ldots, y_{m}(\boldsymbol{s})\right)^{\prime} \quad \boldsymbol{W}(\boldsymbol{s})=\left(w_{1}(\boldsymbol{s}), \ldots, w_{m}(\boldsymbol{s})\right)^{\prime}
$$

$$
\boldsymbol{\epsilon}(\boldsymbol{s})=\left(\epsilon_{1}(\boldsymbol{s}), \ldots, \epsilon_{m}(\boldsymbol{s})\right)^{\prime} \stackrel{\text { iid }}{\sim} N(\mathbf{0}, \boldsymbol{\Psi})
$$

$$
\text { In our case } m=3
$$

Linear Model Coregionalization

Constructive approach following factor analysis ideas:

$$
\begin{aligned}
& \left(\begin{array}{c}
w_{1}(\boldsymbol{s}) \\
\vdots \\
\vdots \\
w_{m}(\boldsymbol{s})
\end{array}\right)=\left(\begin{array}{ccccc}
a_{11} & 0 & \cdots & \cdots & 0 \\
a_{21} & a_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & \cdots & \cdots & \cdots & a_{m m}
\end{array}\right)\left(\begin{array}{c}
v_{1}(\boldsymbol{s}) \\
\vdots \\
\vdots \\
v_{m}(\boldsymbol{s})
\end{array}\right) \\
& (\boldsymbol{l}) \\
& \text { controls correlation in } w_{i}^{\prime} s \\
& \\
& \downarrow
\end{aligned}
$$

Space Varying Linear Model Coregionalization

$\left(\begin{array}{c}w_{1}(s) \\ \vdots \\ \vdots \\ w_{m}(s)\end{array}\right)=\left(\begin{array}{ccccc}a_{11}(s) & 0 & \cdots & \cdots & 0 \\ a_{21}(s) & a_{22}(s) & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m 1}(s) & \cdots & \cdots & \cdots & a_{m m}(s)\end{array}\right)\left(\begin{array}{c}v_{1}(s) \\ \vdots \\ \vdots \\ v_{m}(s)\end{array}\right)$

- Big-N problem is encountered in updating

$$
\boldsymbol{v}_{i}=\left(v_{i}\left(\boldsymbol{s}_{1}\right), \ldots, v_{i}\left(\boldsymbol{s}_{n}\right)\right)^{\prime}, \boldsymbol{a}_{i j}=\left(a_{i j}\left(\boldsymbol{s}_{1}\right), \ldots, a_{i j}\left(\boldsymbol{s}_{n}\right)\right)^{\prime}
$$

Dimension Reduction

Dimension Reduced Model

$$
\tilde{W}(s)=\tilde{\boldsymbol{A}}(s) \tilde{\boldsymbol{v}}(s)
$$

$$
\left(\begin{array}{c}
\tilde{w}_{1}(\boldsymbol{s}) \\
\vdots \\
\vdots \\
\tilde{w}_{m}(\boldsymbol{s})
\end{array}\right)=\left(\begin{array}{ccccc}
\tilde{a}_{11}(\boldsymbol{s}) & 0 & \cdots & \cdots & 0 \\
\tilde{a}_{21}(\boldsymbol{s}) & \tilde{a}_{22}(\boldsymbol{s}) & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\tilde{a}_{m 1}(\boldsymbol{s}) & \cdots & \cdots & \cdots & \tilde{a}_{m m}(\boldsymbol{s})
\end{array}\right)\left(\begin{array}{c}
\tilde{v}_{1}(\boldsymbol{s}) \\
\vdots \\
\vdots \\
\tilde{v}_{m}(\boldsymbol{s})
\end{array}\right)
$$

Soil Nutrient Data Analysis

(1) Modified predictive process models with varying number of knots are fitted.

	Stationary	Non-stationary full	Non-stationary MPP $\mathbf{2 6}$ knots
G	39.45	28.02	24.4
P	92.62	79.9	77.28
D	132.07	107.92	101.68

Advantages over space varying full model
(1) 5 hours of running time for modified predictive process, 21 hours of running time for full model.
(2) Better model fit.

- Observed points with statistically significant correlations given in blue.
- Left to right $\rho(\boldsymbol{s})_{P, S B C}, \rho(\boldsymbol{s})_{P, S N}$ and $\rho(\boldsymbol{s})_{S N, S B C}$.
- P, SN are highly correlated; so are P and SBC .

