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Linear Model Co-regionalization

Let A = ((aij))mi ,j=1, such that the entries above lower triangle
are all zero.

Assign aij ∼ N(0, 1) and log(aii ) ∼ N(0, 1) for i > j .

Assume vk(s) ∼ GP(0,C1,φk ) independently.

φk ’s are assigned uniform priors as before.

It is customarily assumed that Ψ = diag(ψ1, ..., ψm),
ψ1, ..., ψm > 0.

ψk ∼ IG (a, b) a-priori, for k = 1, ...,m.

Entries of B are assigned normal priors.
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Multivariate Matern

Need to define Cov(w(s),w(s ′)), where h = ||s − s ′||.
Amounts to defining Cov(wk(s),wk(s ′)) and
Cov(wk(s),wj(s ′)).

Cov(wk(s),wk(s ′)) = M(h|νk , ak),
Cov(wk(s),wj(s ′)) = αkjM(h|νkj , akj).

Parsimonious Matern kernel defines akj = ak = a and

νkj =
νk+νj

2 .

αkj = ζkjλkλj , λk , λj > 0

ζkj = ηkj
Γ(νk+d/2)1/2

Γ(νk )1/2

Γ(νj+d/2)1/2

Γ(νj )1/2

Γ((νk+νj )/2)
Γ((νk+νj )/2+d/2) .

ηkk = 1 and ((ηkj))mk,j=1 is non-negative definite.

This ensures a valid multivariate cross covariance matrix.
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Gaussian process High Dimensional Regression

Consider modeling the situation y = f (x) + ε, where x ∈ Rp

where p is large.

We have already seen in the theoretical study of Gaussian
process that the convergence rate of the fitted function to the
truth is n−s/(2s+p)(log(n))c , where c is a constant, s is the
smoothness of the true surface, p is the number of predictors
and n is the sample size.

When p is large, convergence rate suffers a lot.

We land in a hopeless situation (similar to the linear
regression case) where we need to add some assumption in
the true regression model to be able to recover it.

Assumption: The regression function is affected only by a few
covariates.

Alternatively, one assumes that the covariates lie in a lower
dimensional noisy manifold.
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Variable selection in Gaussian process

Variable selection in Gaussian process is a very hard and
unsolved problem.

One idea was to employ a variant of the squared exponential
covariance kernel.

They define the covariance kernel
Cσ2,φ,λ(x , x ′) = σ2 exp(−

∑p
j=1 λj(xj − x ′j )

2).

Use some penalty to select important λj ’s.

This is known as the automatic relevance determination
(ARD).

Full Bayesian updating of λj ’s by adding a spike and slab prior
and computing the posterior does not seems to work very well.
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Big data, large sample size n and Gaussian Process

In many machine learning or environmental applications
number of predictors is small.

Sample size is massive.

Important data applications.

It is a wide area with different strategies applied to different
models.

We will see a few strategies.
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Forest Biomass Data

Biomass is the biological material in a living or recently dead
organism.

Prediction of forest biomass is important to understand
current carbon stock and flux, bio-feedstock for emerging
bio-economies, and impact of deforestation.

Forest Inventory and Analysis (FIA) under USDA collects data
on Biomass regurlarly.

The figure shows data observed in 114,371 locations in 2012.
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Spatio-temporal Modeling: Environmental Science

Depth of water table data between 1935 to 2013.

South Dakota

Wyoming

Nebraska

Colorado Kansas

Oklahoma

Texas

New Mexico

(a) High Plain Aquifer (b) Depth of water table

Modeling of spatio-temporal trend of water table
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Problem with Gaussian processes with big data

y = (y1, ..., yn)′ are observed data and x1, ..., xn are the
corresponding predictors.

Let X = [x1 : · · · : xn]′ be the predictor matrix.

Model: y ∼ N(µ1n,Cθ + τ2I ).

Estimating parameters θ from the likelihood

−1

2
log(det(Cθ + τ2I ))− 1

2
(y − µ1n)′(Cθ + τ2I )−1(y − µ1n)

Challenges

Store Cθ + τ2I
Compute Chol(Cθ + τ2I ) = LL′.
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Low Rank Model

Approximate Cθ ≈ BθC ∗−1
θ B ′θ + Dθ

Bθ is the n × r spatial basis matrix r << n.

C ∗θ is an r × r spatial covariance matrix.

Dθ is either sparse or diagonal.

Different choices of basis functions leads to different low rank
models.

The computational complexity O(r3 + nr2) ≤ O(n3).
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Kernel Convolution

Use a finite basis representation to approximate a Gaussian
process.

f (x) =
∫
K (x − z ,θ)du(z), where u(z) is a white noise

process.

This is called Kernel convolution of white noise processes and
is widely used in environmental applications.

An approximation of the f (x) by a finite sum is given by

f (x) ≈
J∑

j=1

K (x − z∗j ,θ)uj ,

z∗1, ..., z
∗
J are “knot” points in Rp and u1, ..., uJ ∼ N(0, σ2).

J << n, i.e. number knots is much lesser than the sample
size.

Choice of K (·,θ) is important for the method to work.

In the spatial context this idea was proposed in 2001 by David
Higdon.
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Kernel Convolution

Model

y = µ+
J∑

j=1

K (x − z∗j ,θ)uj + ε, ε ∼ N(0, τ2).

With data (y1, x1), ..., (yn, xn), the data equation is given by

y = µ1n + Ku + ε, ε ∼ N(0, τ2I )

where the ith row of K is given by
(K (x i − z∗1,θ), ...,K (x i − z∗J ,θ))′.

u = (u1, ..., uJ)′ ∼ N(0σ2I ).

Marginalizing over u, the likelihood is
N(y |µ1n, σ

2KK ′ + τ2I ).

More generally, if one assumes u1, ..., uJ are correlated and
u ∼ N(0, σ2D) then the likelihood is
N(y |µ1n, σ

2KDK ′ + τ2I ).

Winter 2018



Posterior distribution

p(µ, σ2, τ2) ∝ N((y |µ1n, σ
2KDK ′ + τ2I )× p(µ)

× p(τ2)× p(σ2).

K is a n × J matrix.

Inverting the n × n matrix H = σ2KDK ′ + τ2I can be made
easy with simple trick.

This technique is called Sherman-Woodbury-Morrison matrix
identity.

The main computational cost comes from inverting a J × J
matrix.
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Posterior predictive distribution and estimation of
regression function

Posterior distribution of u can be obtained easily.

Note that p(u|−) ∝ N(y |µ1n + Ku, τ2I )× N(u|0, σ2D).

u|− follows a multivariate normal distribution.

Prediction at new predictor x can be obtained as before.

y ∼ N(µ+
∑J

j=1 K (x − z∗j ,θ)uj , τ
2). Draw posterior

predictive samples from this distribution corresponding to
every posterior sample of the parameters.
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Choice of the kernel function

Choice of the kernel function plays important role in the
kernel convolution method.

Popular choices are radial basis functions, wavelet basis
functions etc.

There can be drastic differences with different choices of the
basis function.

Can the kernel choice be automated?
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Predictive Process Model (Banerjee et al., 2008)/Sparse
Gaussian Process

Consider a set of n∗ knots S ∗ = {s∗1, ..., s∗n∗} with n∗ << n.

Process realization over knots:
w∗ = (w(s1), ...,w(s∗n∗))′ ∼ N(0, σ2R∗).

R∗ = [ρ(s∗i , s
∗
j ;φ)] is an n∗ × n∗.

Correlation between w(s) and w∗: r(s) = [ρ(s, s∗i ;φ)].

predictive process: w̃(s) = E[w(s)|w∗] = r(s)′R∗−1w∗

predictive process model

y(s) = x(s)′β + w̃(s) + ε(s), ε(s) ∼ N(0, τ2)

Dimension reduction comes from applying
Sherman-Woodbury-Morrison matrix identity

Only inverting an n∗ × n∗ matrix inversion is required at each stage
of MCMC.
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Issues with PP: Overestimated Nugget & Smoothed
Spatial Surface
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True Spatial Surface Predictive Process Surface

Quantified underestimation

var(w(s)) = var(w̃(s)) + var(w(s)− w̃(s)) ≥ var(w̃(s))

ε̃(s) = w(s)− w̃(s) ∼ GP(0,Cε̃(s1, s2;θ))
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Model Based Bias Adjustments

TPP slide

y(s) = x(s)′β + w̃(s) + ε̃(s) + ε(s)

Modified predictive process (Finley et al., 2009)

ε̃(s i )
ind∼ N(0, δ2(s i ;θ)) ; δ2(s;θ) = Cε̃(s, s;θ) .
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Results

True Non-spatial PP Modified PP

β0 8.25 8.26 (8.15 , 8.27) 10.83 (9.29 , 12.60) 9.21 (7.83 , 10.97)

σ2 6 – 8.95 (2.68 , 15.81) 5.07 (3.44 , 7.32)

τ2 0.5 3.59 (3.30 , 3.88) 2.20 (2.02 , 2.40) .73 (.39 , 1.17)

φ 4 – 2.78 (2.32 , 3.62) 2.73 (2.23 , 5.38)

G – 3959.95 2397.21 347.16

P – 3943.83 2502.70 1471.05

D – 7903.79 4899.91 1818.22

pD – 1.95 31.79 731.42

DIC – 2509.32 2000.50 1628.88

Winter 2018



Knots are Learning from The Data
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Observed data ◦ drawn from normal distribution with varying
frequency sine function mean and .01 variance

knots are assigned U(0,1) prior.

+ naive knot starting locations

• posterior predictive means of 100 new locations
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Knot Selection in Predictive Process, Guhaniyogi et al.,
2012

Hierarchical adaptive predictive process model with random knots

[β,θ1,S
∗,θ2 | y ,S , n∗] ∝ ×[ θ1 ]× N(β |µβ,Σβ)

× N
(
y |Xβ,Σy

(
S ∗,S ; θ1

))
.

Process parameter in data likelihood

Parameters in the intensity surface for the knots.

Idea of modeling knots is applicable to any knot based low
rank model.
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Strategies to Model Knots

Modelling the intensity surface for knots

[S ∗ | ηD , n∗] =
n∗∏
i=1

η(s∗i )∫
D η(s)ds

Parametric option:

log η(s;θ2) =
1

m

m∑
j=1

N2D(s |u j ,Ση) ,

A log-Gaussian approach:

η(s) = exp{αw2(s)}; w2(s) ∼ GP(0, ρ2(·;φ2)) ,

Any other random measure on [S ∗ | n∗].
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Estimated Spatial Surface: PP vs. APP

Easting (km)

N
o
r
t
h
i
n
g
 
(
k
m
)

0 100 200 300

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

0.0

0.2

0.4

0.6

0.8

1.0

Easting (km)

N
o
r
t
h
i
n
g
 
(
k
m
)

0 100 200 300

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−0.4

−0.2

0.0

0.2

0.4

0.6

Easting (km)

N
o
r
t
h
i
n
g
 
(
k
m
)

0 100 200 300

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

data locations Knot density

APP: residual surface PP: residual surface

Winter 2018



Motivating Dataset on Soil Nutrients

LMC
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Correlations Between Soil Nutrients are Space Varying

sub-domain correlation among the soil nutrient outcomes
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Multivariate Spatial Modeling

Figure:Soil Nutrients

Y (s) = µ(s) + W (s) + ε(s)

Multivariate response

Fixed effects

Multivariate spatial function

Multivariate error

Y (s) = (y1(s), ..., ym(s))′ W (s) = (w1(s), ...,wm(s))′

ε(s) = (ε1(s), ..., εm(s))′
iid∼ N(0,Ψ)

In our case m = 3
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Linear Model Coregionalization

Constructive approach following factor analysis ideas:


w1(s)

...

...
wm(s)

 =


a11 0 · · · · · · 0
a21 a22 0 · · · 0

...
...

. . .
...

...
am1 · · · · · · · · · amm



v1(s)

...

...
vm(s)



W (s) controls correlation in wi ’s vi (·)
ind∼ GP(·, ·;θ1)
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Space Varying Linear Model Coregionalization


w1(s)

...

...
wm(s)

 =


a11(s) 0 · · · · · · 0
a21(s) a22(s) 0 · · · 0

...
...

. . .
...

...
am1(s) · · · · · · · · · amm(s)



v1(s)

...

...
vm(s)



W (s) aij(·)
ind∼ GP(·, ·;θ1,a) vi (·)

ind∼ GP(·, ·;θ1)

Big-N problem is encountered in updating
v i = (vi (s1), ..., vi (sn))′, aij = (aij(s1), ..., aij(sn))′.
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Dimension Reduction

GP: aij(s) PP: aij ,pp(s) MPP: ãij(s)

GP: vk(s) PP: vk,pp(s) MPP: ṽk(s)

Dim. Reduction Bias Adjustment

Dim. Reduction Bias Adjustment

ind. ind. ind.
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Dimension Reduced Model

W̃ (s) = Ã(s)ṽ(s)


w̃1(s)

...

...
w̃m(s)

 =


ã11(s) 0 · · · · · · 0
ã21(s) ã22(s) 0 · · · 0

...
...

. . .
...

...
ãm1(s) · · · · · · · · · ãmm(s)



ṽ1(s)

...

...
ṽm(s)



W̃ (s) ãij(·)
ind∼ MPP(·, ·;θ1,a) ṽi (·)

ind∼ MPP(·, ·;θ1)
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Soil Nutrient Data Analysis

1 Modified predictive process models with varying number of
knots are fitted.

Stationary Non-stationary full Non-stationary MPP
26 knots

G 39.45 28.02 24.4

P 92.62 79.9 77.28

D 132.07 107.92 101.68

Advantages over space varying full model

1 5 hours of running time for modified predictive process, 21
hours of running time for full model.

2 Better model fit.

Winter 2018



Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.2

0.4

0.6

0.8

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.6

0.7

0.8

0.9

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.2

0.4

0.6

0.8

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.6

0.7

0.8

0.9

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

0.2

0.3

0.4

0.5

0.6

0.7

Winter 2018



Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

Easting (m)
N

or
th

in
g 

(m
)

0 50 100 150

0
50

10
0

15
0

20
0

Easting (m)

N
or

th
in

g 
(m

)

0 50 100 150

0
50

10
0

15
0

20
0

Observed points with statistically significant correlations given
in blue.

Left to right ρ(s)P,SBC , ρ(s)P,SN and ρ(s)SN,SBC .

P, SN are highly correlated; so are P and SBC.
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