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g-Prior

yi ∼ N(µi , 1/φ), i = 1, ..., n.

x1, ..., xp correspond to p columns each of length n.

Let γ = (γ1, ..., γp) ∈ {0, 1}p.

µ = (µ1, ..., µn)′ and Xγ is an n× pγ dimensional matrix that
includes columns corresponding to γi = 1.

Mγ : µ = 1nα + Xγβγ .

βγ is pγ-dimensional.

Θγ = {βγ , α, φ}.
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g-Prior Contd..

g-prior was another class of approach that has surfaced long
back due to its computational ease.

Let φ be the precision parameter. The formulations of g-prior
is

βγ |φ ∼ N(0,
g

φ
(X ′γXγ)−1), π(φ) ∝ 1

φ

Let Mb be any base model. Then

BF [Mγ : Mζ] =
BF [Mγ : Mb]

BF [Mζ : Mb]

The marginal likelihood is given by

π(y |Mγ) =
Γ((n − 1)/2)
√
π
n−1√

n
||y − ȳ ||−(n−1) (1 + g)(n−1−pγ)/2

[1 + g(1− R2
γ)](n−1)/2

.
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g-Prior Contd..

When Mb is the null model, denoted by MN

BF [Mγ : MN ] = (1 + g)
n−pγ−1

2 [1 + g(1− R2
γ)]−(n−1)/2.

When Mb is the full model, denoted by MF

BF [Mγ : MF ] = (1 + g)
−n+p+1

2 [1 + g
(1− R2

F )

(1− R2
γ)

](n−pγ−1)/2.

R2
γ is the R2 statistics for the model Mγ .

How to choose g? Can a fixed g be used?
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choice of g

Unit information prior

Kass and Wasserman (1995) recommended choosing priors
with the amount of information about the parameter equal to
the amount of information contained in one observation.

For regular parametric families, the amount of information is
defined through Fisher information.

In the normal regression case, the unit information prior
corresponds to taking g = n, leading to Bayes factors that
behave like BIC.

Risk inflation criterion

Foster and George (1994) calibrated priors for model selection
based on the Risk Inflation Criterion (RIC).

They recommended the use of g = p2 from a minimax
perspective.
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Choice of g

Benchmark prior

Fernandez et al. (2001) did a thorough study on various
choices of g with dependence on the sample size n or the
model dimension p.
They concluded with the recommendation to take
g = maxi(n, p2).
We refer to their benchmark prior specification as BRIC as it
bridges BIC and RIC.

Local empirical Bayes

The local EB approach can be viewed as estimating a separate
g for each model.
Using the marginal likelihood after integrating out all
parameters, an EB estimate of g is the maximum (marginal)
likelihood estimate constrained to be non-negative.

ĝEBL
γ = max{Fγ − 1, 0}, Fγ =

R2
γ/pγ

(1− R2
γ)/(n − 1− pγ)

.
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Choice of g

Global empirical Bayes

The global EB procedure assumes one common g for all
models, and borrows strength from all models by estimating g
from the marginal likelihood of the data, averaged over all
models.

ĝEPB = arg max
g>0

∑
γ

p(Mγ)
(1 + g)

n−pγ−1

2

[1 + g(1− R2
γ)](n−1)/2

Issues with choosing a fixed g

Barlett paradox and information paradox.

Som et al. (2016) proved that there is an additional paradox
known as the conditional Lindley paradox.
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Mixture of g-priors

Letting π(g) as the prior on g , mixtures of g prior yields

BF [Mγ : MN ] =

∫ ∞
0

(1 + g)(n−pγ−1)/2[1 + (1− R2
γ)]−(n−1)/2π(g)dg

under the null based approach.

Expressions for the full model based approach can also be
obtained easily.

Under selection of a model Mγ 6= MN , the posterior mean of
µ,

E [µ|Mγ , y ] = 1nα̂ + E [g/(1 + g)|Mγ , y ]xγβ̂γ ,

α̂ and β̂γ are ordinary least square estimates under model
Mγ .

The optimal Bayes estimate of µ under squared error loss is

E [µ|y ] = 1nα̂ +
∑

γ:Mγ 6=MN

p(Mγ |y)E [g/(1 + g)|Mγ , y ]xγβ̂γ .
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Mixtures of g-priors

Zellner-Siow prior:
π(g) =

√
(n/2)Γ(1/2)g−3/2e−n/(2g), g > 0

Hyper-g prior: π(g) = a−2
2 (1 + g)−a/2, g > 0.

Though the integral w.r.t g might not be in closed form, it is
a one dimensional integral that assumes easy approximation
through Laplace or quadrature techniques.
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Model selection consistency

P(Mγ |y)
P→ 1, when Mγ is the true model.

By the relationship between posterior probabilities and Bayes
factor

BF [Mγ′ : Mγ ]
P→ 0,

when Mγ is the true model and Mγ′ be any other model that
does not contain the true model.

Zellner-Siow and hyper-g priors are consistent when Mγ is not
the null model.
When Mγ = MN , hyper-g prior is not consistent.
Lack of consistency of the hyper-g prior in the null model
motivated a new prior hyper-g/n

π(g) =
(a− 2)

2n
(1 + g/n)−a/2.
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Solving paradoxes

Mixture of g-priors solve the information paradox.
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Block hyper-g prior

Model: y = α1n + X 1β1 + · · ·+ X kβk + ε

βs is ps dimensional.

Let g = (g1, ..., gk).

β | g , τ2 ∼ N(0,Aτ2),
A = diag(g1(X ′1X 1)−1, ..., gk(X ′kX k)−1).

Assign block hyper-g prior on g ,
π(g) =

∏k
i=1

(a−2)
2 (1 + gi )

−a/2.
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Random Compression: Background

When objects to deal with are of huge size, it is difficult to
work with them or even merely store and transfer them.

In those cases, it is natural to extract a few features of the
data.

For example, think of the summary statistics (or sufficient
statistics idea from AMS 205B).

In the case of matrices, it is a popular practice to represent a
matrix with only eigenvectors corresponding to large
eigenvalues, sometimes called the low-rank decomposition of a
matrix.

PCA can be computationally demanding. Sometimes the
computational complexity of PCA with N vectors can be as
high as O(N3).
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Random Compression: Background

Johnson-Lindenstrauss Lemma

Given 0 < ε < 1, a set X of m points in RN , and a number
n > 8 ln(m)/ε2, there is a linear map f : RN → Rn such that

(1− ε)‖u − v‖2 ≤ ‖f (u)− f (v)‖2 ≤ (1 + ε)‖u − v‖2,

for all u, v ∈ X .

If our statistical method is based on distance between the
data points, we may work with f (u)’s rather than u’s.

Easy to store, easy to manipulate and transfer.

Question: How to find such an f (·)?
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Choice of f (·) through random compression

It is difficult to find a deterministic function that satisfies the
JL-lemma.

Construct a matrix Φ = ((Φij)) of dimension n × N s.t
Φij ∼ N(0, 1/n).

A second option is to draw Φij ∼ N(0, 1) and then make n
rows of Φ orthogonal.

Achlioptas suggested using

Φij =


−
√

3 w .p. 1/6
0 w .p. 2/3√
3 w .p. 1/6

With any such choice, define f (u) = Φu.
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Usage of the Random Compression Matrix

Suppose we have a X matrix of dimension n × p, n is the
sample size and p is the dimension of a sample.

p is big, hence k-means clustering cannot be applied.

Compress every row of X by a random compression matrix Φ.

K-means clustering can the be safely applied on the
compressed lower dimensional vectors.
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Compressed Sensing

Suppose w ∈ RN be compressed with Φ ∈ Rn×N to
g = Φw + ε.

Can we recover w from g?

Yes, when w is sparse.

Any vector f can be sparsified w.r.t. a basis function (e.g.
wavelet).

Mathematically, it is possible to find a matrix B s.t. w = B ′f
is sparse, though f is not.

Possible to recover w through penalized optimization or
Bayesian prior formulation.
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Can Compressing Predictors Help?

xp

1

x1, ..., xn are of mammoth size.

Storage is highly prohibitive, let alone
computation.

Idea

Compressing predictors randomly in low dimension helps solve our
problem.

Φm

p

xp

1

Random Projection Matrix
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Random Projection Matrix: Lots of Zeroes Required in Φ

Overwhelming literature on scaled Gaussian projection matrix
(Φij ∼ N(0, 1/m))→ popular choice.

We anticipate sparsity in the true predictor coefficients.

Might be important to have lots of zero entries in Φ.

Random Projection (Dasgupta 2003, 2013)→ Our Choice

Φij =


−1/
√
ψ w .p. ψ2

0 w .p. 2ψ(1− ψ)
1/
√
ψ w .p. (1− ψ)2

Rows of Φ are orthonormalized using Gram-Schmidt
orthogonalization procedure.

Winter 2018



Random Projection Matrix: Lots of Zeroes Required in Φ

Overwhelming literature on scaled Gaussian projection matrix
(Φij ∼ N(0, 1/m))→ popular choice.

We anticipate sparsity in the true predictor coefficients.

Might be important to have lots of zero entries in Φ.

Random Projection (Dasgupta 2003, 2013)→ Our Choice

Φij =


−1/
√
ψ w .p. ψ2

0 w .p. 2ψ(1− ψ)
1/
√
ψ w .p. (1− ψ)2

Rows of Φ are orthonormalized using Gram-Schmidt
orthogonalization procedure.

Winter 2018



Random Projection Matrix: Lots of Zeroes Required in Φ

Overwhelming literature on scaled Gaussian projection matrix
(Φij ∼ N(0, 1/m))→ popular choice.

We anticipate sparsity in the true predictor coefficients.

Might be important to have lots of zero entries in Φ.

Random Projection (Dasgupta 2003, 2013)→ Our Choice

Φij =


−1/
√
ψ w .p. ψ2

0 w .p. 2ψ(1− ψ)
1/
√
ψ w .p. (1− ψ)2

Rows of Φ are orthonormalized using Gram-Schmidt
orthogonalization procedure.

Winter 2018



Random Projection Matrix: Lots of Zeroes Required in Φ

Overwhelming literature on scaled Gaussian projection matrix
(Φij ∼ N(0, 1/m))→ popular choice.

We anticipate sparsity in the true predictor coefficients.

Might be important to have lots of zero entries in Φ.

Random Projection (Dasgupta 2003, 2013)→ Our Choice

Φij =


−1/
√
ψ w .p. ψ2

0 w .p. 2ψ(1− ψ)
1/
√
ψ w .p. (1− ψ)2

Rows of Φ are orthonormalized using Gram-Schmidt
orthogonalization procedure.

Winter 2018



Bayesian Compressed Regression

Compressed Regression

y = (Φx)′β + ε, ε ∼ N(0, σ2)

β is the low dimensional coefficients on compressed predictors.

yn

1

= Xn

p

Φ′p

m

βm

1

+ εn

1

No longer in the high-dimensional setting, use conjugate prior.

Conjugate Prior

β |σ2 ∼ N(0, σ2Σβ), σ2 ∼ IG (a, b).
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Analytical Posteriors & Posterior Predictive Distributions

Posteriors

β | y ,X ,Φ ∼ tn (µ,Σ) , σ2 | y ,X ,Φ ∼ IG (a1, b1)

Posterior Predictive Distribution

yn+1 | y ,X ,Φ, xn+1 ∼ tn
(
µpred , σ

2
pred

)
Only needs sufficient statistics X ′X , X ′y and y ′y .

Only matrix operation required m ×m matrix inversion and
m × p, p × n matrix multiplication.
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Bayesian Model Averaging Over Compression Matrix
Dimension (m)

To limit sensitivity to the randomly generated Φ and choice of
m, we use model averaging.

Model
Averaged
Prediction

Prediction
with Φ1

· · ·
· · ·

Prediction
with Φs

Model Weights are again functions of X ′X , X ′y and y ′y
(sufficient statistics).
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Computation Speeds: BCR (Guhaniyogi et al., 2016) Vs
LASSO

Run time compared under similar predictive performance.
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Random Compression for Frequentist Estimation with Big
Data

Computing least square estimator is time consuming with big
data.

However, one can compute the compressed least squares
estimator.

If X is n × p dimensional matrix and y is an n dimensional
vector, n >> p.

Rather than using the objective function ||y − Xβ||2, use
||Φ(y − Xβ)||2.

The least squares solution is (X ′Φ′ΦX )−1(X ′Φ′ΦX ).

This was identified as not a very stable solution.

Another estimator is (X ′Φ′ΦX )−1X ′y .

This comes from minimizing the objective function
1
2 ||ΦXβ||2 − y ′Xβ.

This is called partial least squares solution and is much more
stable.
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High Dimensional Binary Regression

yi ∼ Ber(pi ), i = 1, ..., n.

Use logistic link to model pi =
exp(µ+x ′iβ)

1+exp(µ+x ′iβ)
.

x i is p × 1 dimensional.

ln(β) =
∏n

i=1
exp(yiµ+yix ′iβ)
1+exp(µ+x ′iβ)

.

Penalized optimization: arg min
β

[log(ln(β)) + λ
∑p

j=1 |βj |].

Bayesians would instead propose prior distribution on β.
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High dimensional Regression for Generalized Linear Model
(Jiang, 2007)

GLM with one natural parameter is given by the density

p(y |x) = exp[a(x ′β)y + b(x ′β) + c(y)].

µ = E [y |x ] = −b′(x ′β)/a′(x ′β).

This formalism includes regression models for responses that
are binary, Poisson and Gaussian (with known error variance),
and can be easily extended to the cases with a dispersion
parameter.

γ = (γ1, ..., γp)′ is the vector of inclusion indicators.

Let P(γj = 1) = λ, βγ ∼ N(0,V γ).
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Variable Selection in Multivariate Regression

U is a matrix having independent standard normal entries.

M + N (Γ,Σ) will stand for a matrix variate normal
distribution of V = M + A′UB, where M , A, B are fixed
matrices satisfying A′A = Γ, and B ′B = Σ.

Thus M is the matrix mean of V .

γiiΣ and σjjΓ are the covariance matrices of the ith row and
jth column respectively of V .

If U is of the order n × p, n ≥ p, the notation IW (δ,Σ) with
δ = n − p + 1 will stand for the distribution of B ′(U ′U)−1B,
an inverse Wishart distribution.
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The Model

y − 1α′ − XB ∼ N (I n,Σ)

y is an n × q random response matrix.

X is the predictor matrix of dimension n × p.

B is a p × q matrix of predictor coefficients.
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Prior

α′ −α′0 ∼ N(h,Σ),Bγ − B0γ ∼ N (Hγ ,Σ)

Hγ = DγRγDγ .

Dγ is a diagonal matrix with jth diagonal entry v0j if γj = 0
and v1j if γj = 1.

Rγ is a correlation matrix.

γj ∼ Ber(wj), Σ ∼ IW (δ,Q).
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Classification and Regression Trees

What happens when the relationship between the response
and the predictors is not linear?

The idea is to split the predictor space into a large number of
sub-domains.

Let (x1, y1), ..., (xn, yn) be the training sample with yi ∈ R
and x i ∈ Rp.

The Rp dimensional predictor space is split into sub-domains
with binary splitting.

When prediction of a response at the predictor value z ∈ Rp

needs to be done, first we recognize in which subdomain c the
predictor value belongs to.

Next, predict the response at z by 1
nc

∑
i∈c yi , i.e. by the

average of the responses corresponding to the predictors
residing in that sub-domain.

In the case of classification, we decide with majority votes.
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Classification and Regression Trees Significance

One of the most comprehensible non-parametric methods
used to be the k-nearest-neighbors: find the points which are
most similar to you, and do what, on average, they do.

Drawback 1: First, you are defining “similar” in terms of the
inputs, not the response.

Drawback 2: Second, k is constant everywhere, when some
points just might have more very-similar neighbors than
others.

Trees get around both problems.

Leaves correspond to regions of the input space (a
neighborhood), but one where the responses are similar, as
well as the inputs being nearby.

Additionally, their size can vary arbitrarily.

Prediction trees are adaptive nearest-neighbor methods.
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Constructing the trees

Every recursive algorithm needs to know when it is done, a
stopping criterion.

Here this means when to stop trying to split nodes.

Obviously nodes which contain only one data point cannot be
split, but giving each observations its own leaf is unlikely to
generalize well.

A more typical criterion is something like, halt when each child
would contain less than five data points, or when splitting
increases the information by less than some threshold. Picking
the criterion is important to get a good tree.

The sum of squared errors for a tree T is

S =
∑

c∈leaves(T )

∑
i∈c

(yi −mc)2,

where mc = 1
nc

∑
i∈c yi , the prediction for leaf c .

We will minimize S while constructing a tree.
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Constructing a regression tree

The basic regression-tree-growing algorithm then is as follows

Start with a single node containing all points. Calculate mc

and S .

If all the points in the node have the same value for all the
input variables, stop. Otherwise, search over all binary splits
of all variables for the one which will reduce S as much as
possible.

If the largest decrease in S would be less than some threshold
δ, or one of the resulting nodes would contain less than q
points, stop. Otherwise, take that split, creating two new
nodes.

In each new node, go back to step 1.

The choice of q, δ are arbitrary.

In a more sophisticated algorithm, we use pruning of the trees
based on the test sample.
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Bagging (Breiman, 1994)

The test and training data are T and L .

A classification (or regression tree) is constructed using the
training data L and prediction is done on T based on the
constructed tree.

Bootstrap sample LB is selected from L . This is used to
construct the tree and carry out prediction of T .

This is repeated multiple times.

Average prediction is provided over all the bootstrap samples.
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Random Forest

CART may provide inaccurate prediction when there is noise
in the response or predictors.

Rather than constructing one single tree, random forest
constructs a large number of trees, i.e. a forest.

The training algorithm for random forests applies the general
technique of bootstrap aggregating, or bagging, to tree
learners.

Let the training predictors be X = {x1, ..., xn} with the
corresponding responses Y = {y1, ..., yn}.

For b = 1, ...,B:

Sample, with replacement, n training samples Xb,Yb from
X ,Y .

Train a classification or regression tree hb on Xb,Yb.

After training, predictions for unseen samples z can be made
by averaging the predictions from all the individual regression
trees on z : ĥ(z) = 1

B

∑B
b=1 hb(z).
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Random Forest

For classification, we take the majority vote.

The construction of tree is little different in random forest
compared to CART.

In random forest, in each tree, we only allow m << p
randomly selected predictors to undergo binary split.

As shown by Breiman, random forest decreases the variance of
the model, without increasing the bias.

Thus, while the predictions of a single tree are highly sensitive
to noise in its training set, the average of many trees is not.

Simply training many trees on a single training set would give
strongly correlated trees (or even the same tree many times, if
the training algorithm is deterministic); bootstrap sampling is
a way of de-correlating the trees by showing them different
training sets.
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Bayesian CART

Place CART within a Bayesian framework by specifying a
prior on tree space.

Can get multiple tree realizations by using tree-changing
proposal distribution: birth/death/change/swap.

Get multiple realizations of 1 tree, average over posterior to
form predictions.

A regression tree models this data as

y = g(x ,T ,M) + ε,

where g(x ,T ,M) represents the regression tree.

Bayesian Framework

π(T ,M) = π(M|T )π(T ).
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Bayesian CART

Assuming that there are b terminal nodes for a tree T ,
M = {θ1, ...,θb} is the set of parameters corresponding to the
terminal nodes of the tree T .

g(x ,T ,M) is θj if x belongs to the jth terminal node of the
tree.

Let y = (y1, ..., yb)′ be the set of responses in the b terminal
nodes of the tree.

y j = (yj1, ..., yjnj )
′ are the observations in the jth terminal

node.

p(y |Θ,X ,T ) =
b∏

i=1

ni∏
j=1

f (yij |θi )

f (yij |θi ) = N(yij |µi , σ2i ), θi = (µi , σ
2
i ) for regression.

When yij belongs to one of the K categories C1, ...,CK ,

f (yij |θi ) =
K∏

k=1

p
I (yij∈Ck )
ik , where θi = (pi1, ..., piK )′.
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Parameter Prior

µi |σ2i ,T ∼ N(µ̄, σ2i /a), σ2i |T ∼ IG (ν/2, νλ/2).

Integrating over the parameters p(y |X ,T ) comes in closed
form.

In the case of classification, (pi1, ..., piK )|T ∼ Dir(α1, ..., αK ).

Again, in the case of classification p(y |X ,T ) comes in closed
form.
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Tree prior

Instead of directly specifying a prior on T , we specify p(T )
implicitly by a tree-generating stochastic process.

Each realization of such a process can simply be considered as
a random draw from this prior.

The generating process is determined by the specification of
two functions, pSPLIT (η,T ) and pRULE (ρ|η,T ).

pSPLIT (η,T ) is the probability that terminal node η is split
and pRULE (ρ|η,T ) is the probability of assigning splitting rule
ρ to η given that η will undergo split.
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Tree prior

The stochastic process for drawing a tree from this prior can be
described in the following recursive manner:

Begin by setting T to be the trivial tree consisting of a single
root (and terminal) node denoted η.

Split the terminal node η with probability pSPLIT (η,T ).

If the node splits, assign it a splitting rule ρ according to the
distribution pRULE (ρ|η,T ), and create the left and right
children nodes. Let T denote the newly created tree, and
apply steps 2 and 3 with T equal to the new left and the right
children (if nontrivial splitting rules are available).
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Choice of pSPLIT (η,T ) and pRULE (ρ|η,T )

pSPLIT (η,T ) = α < 1. Setting α small will tend to yield
smaller trees and is a simple convenient way to control the
size of trees generated by growing process.

It is somewhat limited because it assigns equal probability to
all binary trees with b terminal nodes regardless of their shape.

pSPLIT (η,T ) = α(1 + dη)−β, where α ∈ (0, 1), β ∈ [0,∞), dη
is the depth of the node η.

pRULE (ρ|η,T ) is set by first randomly picking one of the
available predictors (say xi ) which can undergo split. Then
choose a cut point s uniformly from the available observed
values of xi if xi is quantitative, or choose C uniformly from
the set of available subsets if xi is qualitative.

This is called the uniform splitting rule.

There are non-uniform choices as well.
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Stochastic Search of the Posterior

Once you integrate out the parameters,
p(T |y ,X ) ∝ p(y |T ,X )p(T ).

Thus we will run MCMC to create a sequence of trees
T 0,T 1, ....

MH algorithm will be used.

Step 1: Generate a candidate tree T ∗ with probability
distribution q(T i ,T ∗).

Step 2: Set T i+1 = T ∗ with probability

α(T i ,T ∗) = min

{
q(T ∗,T i )p(y |T ∗,X )p(T ∗)

q(T i ,T ∗)p(y |T i ,X )p(T i )
, 1

}
Otherwise set T i+1 = T i .
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Generating candidate trees

GROW: Randomly pick a terminal node. Split it into two new
ones by randomly assigning it a splitting rule according to
pRULE used in the prior.

PRUNE: Randomly pick a parent of two terminal nodes and
turn it into a terminal node by collapsing the nodes below it.

CHANGE: Randomly pick an internal node, and randomly
reassign it a splitting rule according to pRULE used in the prior.

SWAP: Randomly pick a parent-child pair which are both
internal nodes. Swap their splitting rules.
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Bayesian Additive Regression Tree

Let T denote a binary tree consisting of a set of interior node
decision rules and a set of terminal nodes.

M = {µ1, ..., µb} denote a set of parameter values associated
with each of the b terminal nodes of T .

For a given T and M, we use g(x ,T ,M) to denote the
function which assigns µi ∈ M to x .

Thus a single tree model looks like

y = g(x ,T ,M) + ε.

For the sum of tree model

y =
m∑
j=1

g(x ,Tj ,Mj) + ε, ε ∼ N(0, σ2)

µij ∈ Mj are the terminal node specific parameter.
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Prior on parameters

Assign independent prior on trees.

p((T1,M1), ..., (Tm,Mm), σ) = p(σ)
m∏
j=1

p(Tj ,Mj)

= p(σ)
m∏
j=1

p(Mj |Tj)p(Tj)

p(Mj |Tj) =
∏

i p(µij |Tj), where µij ∈ Mj .

Under such priors, the tree components (Tj ,Mj) are
independent of each other and of σ, and the terminal node
parameters of every tree are independent.

To simplify further, assume identical prior forms for all p(Tj)
and also identical forms for all p(µij |Tj).
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Prior on p(µij |Tj)

p(µij |Tj) = N(µij |µµ, σ2µ).
The induced prior on E [y |x ] is N(mµµ,mσ

2
µ).

It is highly probable that E [y |x ] is between ymin and ymax , the
observed minimum and maximum of response in the data.
This can be conveniently done by choosing µµ and σµ so that
mµµ − k

√
mσµ = ymin, mµµ + k

√
mσµ = ymax . One takes

k = 2.
σ2 ∼ νλ/χ2

ν .
Two natural choices for σ̂ are a) the “naive” specification, in
which we take σ̂ to be the sample standard deviation of y , or
b) the “linear model” specification, in which we take σ̂ as the
residual standard deviation from a least squares linear
regression of y on the original x’s.
Pick a value of ν between 3 and 10 to get an appropriate
shape, and a value of λ so that the qth quantile of the prior
on σ is located at σ̂, i.e. P(σ < σ̂) = q.
One uses q = 0.75, 0.90, 0.99.
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Prior on Tj

The probability that a node at depth d is nonterminal, given
by α(1 + d)−β, where α ∈ (0, 1), β ∈ [0,∞).

The distribution on the splitting variable assignments at each
interior node is given by the uniform prior on available
variables.

The distribution on the splitting rule assignment in each
interior node, conditional on splitting variable is the uniform
prior on the discrete set of available splitting values.

Depending on α and β, we put apriori belief of how deep the
tree will be.

For α = 0.95, β = 2, only trees with upto 5 terminal nodes
have non-negligible probability.
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Choice of m

One can put prior on m and implement a full Bayes
implementation of BART.

Alternatively, one can choose the “best” m by some cross
validation technique.

Both are computationally cumbersome, hence m is kept fixed
with a default value of 200.
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Model Fitting

Model fitting is done through MCMC.

Need to update (Tj ,Mj)|(T(j),M(j)), σ for j = 1, ...,m and
σ|T1, ...,Tm,M1, ...,Mm.

T(j) = {T1, ...,Tj−1,Tj+1, ...,Tm} and
M(j) = {M1, ...,Mj−1,Mj+1, ...,Mm}.
Again it will involve reversible jump, hence the inference will
be done after marginalizing over Mjs.

Note that the full conditional distribution of σ2 follows an
Inverse Gamma distribution.
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Model Fitting

Observe that the conditional distribution
(Tj ,Mj)|(T(j),M(j)), σ, y depends on (T(j),M(j)), y with
Rj = y −

∑
k 6=j g(x ,Tk ,Mk).

(Tj ,Mj)|(T(j),M(j)), σ, y is equivalent to (Tj ,Mj)|Rj , σ.

Note that Rj = g(x ,Tj ,Mj) + ε, ε ∼ N(0, σ2).

p(Tj |Rj , σ) ∝ p(Tj)
∫
p(Rj |Mj ,Tj , σ)p(Mj |Tj , σ)dMj .

Similar to the Bayesian CART,∫
p(Rj |Mj ,Tj , σ)p(Mj |Tj , σ)dMj comes in a closed form.

The mixing is dramatically better compared to the Bayesian
CART.
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Prediction from MCMC Iterates

Draw Mj |Rj ,Tj , σ from a normal distribution.

Let {T ∗(l)j ,M
∗(l)
j , σ∗(l)}Lj=1 be the post burn-in L MCMC

samples.

The posterior predictive samples of the response at x are

y∗1 , ...., y
∗
L , where y∗l ∼ N(

∑m
j=1 g(x ,T

∗(l)
j ,M

∗(l)
j ), σ2∗(l)).
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Modeling Nonlinear Relationship using Gaussian processes

Gaussian process is a special type of stochastic process.

It is one of the most widely used stochastic processes.

A stochastic process is a collection of random variables
{Xt}t∈T , where T is a subset of [0,∞).

T can be a discrete set in which case the sequence of
{Xt}t∈T is countably infinite.

Discrete stochastic processes include discrete Markov chains,
birth-death processes and so on.

When T is continuous, the sequence of {Xt}t∈T is countably
infinite.
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More on Stochastic Processes

Why stochastic processes are important?

Stochastic processes are used to specify distribution of an
unknown function.

In the context of Bayesian statistic, it can be used as a prior
distribution on unknown functions.

For example, if y is the response and x ∈ Rp is a
p-dimensional predictor, one typically models y = f (x) + ε to
capture the non-linear relationship between x and y .

f (·) is an unknown function which is modeled with a
stochastic process.
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Defining a Stochastic Process

In contrast to the case of random vectors or random variables,
it is not easy to define a notion of a density (or a probability
mass function) for a stochastic process.

Without going into details why exactly this is a problem, let
me just mention that the main culprit is the infinity.

One usually defines a family of finite-dimensional
distributions, i.e., the joint distributions of random vectors
(Xt1 , ...,Xtn) for all n ∈ N and t1, ..., tn ∈ T .

One needs to ensure that these final dimensional distributions
lead to a consistent stochastic process.

That is ensured by the Kolmogorov consistency theorem.

When each random variable Xt : Ω→ R, for every ω ∈ Ω, the
function t → Xt(ω) is called a sample path.

Winter 2018



Gaussian Processes

A Gaussian process is a stochastic process such that any finite
dimensional distribution is Gaussian.

Thus (Xt1 , ...,Xtn)′ ∼ N(µ,Σ), for any t1, ..., tn ∈ T and any
n.

How to determine the µ,Σ so that given any t1, ..., tn they
are automatically determined?

One defines a Gaussian process through a mean function and
a covariance function.
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{Xt : t ∈ T } ∼ GP(µ(·),Cθ(·, ·)) implies

X = (Xt1 , ...,Xtn)′ ∼ N(µ,Cθ)

for any finite set of locations t1, ..., tn.

Cθ = (Cθ(ti , tj)) is the n × n covariance matrix.

µ = (µ(t1), ..., µ(tn))′.

Note that Cθ(·, ·) should be such that the matrix Cθ is
positive definite for any n and any t1, ..., tn.

Thus any function can’t be chosen as a candidate of Cθ(·, ·).

Winter 2018


