Penalized Optimization: Unsatisfactory in Predictive Inference

- Penalized optimization is unable to provide predictive inference. Only provides point prediction.
- Typical focus in many scientific applications is uncertainty characterization.
- Different choices of tuning parameters may affect inference considerably.

Bayesian Approach

- If loss function corresponds to a likelihood \& penalty to the log prior (up to normalizing constants), then estimates correspond to mode of a Bayesian posterior (MAP estimates).
- Consider the linear regression model with known σ^{2} and with prior

$$
y_{i} \sim N\left(\boldsymbol{x}_{i}^{\prime} \boldsymbol{\beta}, \sigma^{2}\right), \quad \beta_{j} \sim \pi_{\beta}
$$

- The \log posterior of $\boldsymbol{\beta}$ upto a constant is

$$
-\frac{1}{2 \sigma^{2}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}+\sum_{j=1}^{p} \log \left(\pi_{\beta}\left(\beta_{j}\right)\right.
$$

- Although such estimators correspond to the mode of a Bayesian posterior, they are typically not viewed as Bayesian.
- Bayes estimators $\hat{\boldsymbol{\beta}}_{\text {Bayes }}$ are defined as the value that minimizes the Bayes risk.
- Bayes risk is the expectation of a loss $L(\hat{\boldsymbol{\beta}}, \boldsymbol{\beta})$ averaged over the posterior of $\boldsymbol{\beta}$.
- For example, if we choose squared error loss, $\hat{\boldsymbol{\beta}}$ is the posterior mean.
- MAP is not a Bayes estimator for a reasonable choice of loss function.
- Also, we would like to utilize the whole posterior instead of just using a point estimate.

Bayesian Approach in High Dimensions

- Bayesians choose a prior distribution $\pi\left(\boldsymbol{\beta}, \sigma^{2}\right)$ and calculate the posterior

$$
\pi\left(\boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}, \boldsymbol{X}\right)=\frac{\pi\left(\boldsymbol{\beta}, \sigma^{2}\right) N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right)}{\int \pi\left(\boldsymbol{\beta}, \sigma^{2}\right) N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) d \boldsymbol{\beta} d \sigma^{2}}
$$

- When $n \gg p, \pi\left(\boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}, \boldsymbol{X}\right) \approx N\left(\boldsymbol{\beta} \mid \hat{\boldsymbol{\beta}}, I(\boldsymbol{\beta})^{-1}\right)$, where $\boldsymbol{I}(\boldsymbol{\beta})$ is the Fisher information matrix.
- The above is called the Bernstain-Von Mises theorem or the Bayesian central limit theorem.
- This essentially means that when $n \gg p$, prior does not have much role in determining the posterior. In fact, the likelihood swamps the prior and we essentially get equivalent results from frequentist and Bayesian.
- This rosy picture breaks down when p is large.
- Prior has profound effect for large p and it is essential to carefully design the prior.
- Priors should be designed in such a way that the posterior of $\boldsymbol{\beta}$ concentrates around the "true" $\boldsymbol{\beta}_{0}$.
- Prior should have sufficient information. Flat prior on $\boldsymbol{\beta}$ gives inconsistencies.
- Motivated by the idea of sparsity, one popular approach is to impose sparsity on $\boldsymbol{\beta}$ through prior distributions.
- Later we will see that designing prior on $\boldsymbol{\beta}$ can also be governed by other considerations.

Bayesian Variable Selection by Sparsity

- One natural prior to consider is

$$
\beta_{j} \stackrel{i i d}{\sim} \pi_{0} \delta_{0}+\left(1-\pi_{0}\right) g .
$$

One popular choice of g is $N(0, c)$.
π_{0} is the prior probability of excluding a predictor.
δ_{0} is the degenerate distribution at 0 .
Prior on the nonzero coefficients are given by g.

More into Spike and Slab

- Define the variable inclusion indicator by $\gamma_{j}=I\left(\beta_{j} \neq 0\right)$.
- Therefore, $\gamma_{1}, \ldots, \gamma_{p}$ indicate which predictors are included in the model, $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)^{\prime} \in\{0,1\}^{p}$.
- Note that, depending on whether a variable is included or excluded, the total number of candidate models is 2^{p}.
- A candidate model is represented by γ.
- The size of this model $p_{\gamma}=\sum_{j=1}^{p} \gamma_{j}$, $p_{\gamma} \sim \operatorname{Binomial}\left(p, 1-\pi_{0}\right)$.
- Thus the expected model size is $p\left(1-\pi_{0}\right)$.
- Clearly, if we fix π_{0} and p is big, it gives a lot of prior information on the model size.
- π_{0} is an important parameter and generally assigned a beta prior.
- Let $\boldsymbol{\beta}_{\gamma}=\left\{\beta_{j}: \gamma_{j}=1, j=1, \ldots, p\right\}$.
- Marginal likelihood of the model γ is

$$
L(\gamma \mid \boldsymbol{y}, \boldsymbol{X})=\int N\left(\boldsymbol{y} \mid \boldsymbol{X}_{\gamma} \boldsymbol{\beta}_{\gamma}, \sigma^{2} \boldsymbol{I}\right) \pi\left(\boldsymbol{\beta}_{\gamma}, \sigma^{2}\right) d \boldsymbol{\beta}_{\gamma} d \sigma^{2}
$$

- The posterior probability of model γ is given by

$$
\pi(\gamma \mid \boldsymbol{y}, \boldsymbol{X})=\frac{L(\gamma \mid \boldsymbol{y}, \boldsymbol{X}) \pi(\gamma)}{\sum_{\gamma^{*}} L\left(\gamma^{*} \mid \boldsymbol{y}, \boldsymbol{X}\right) \pi\left(\gamma^{*}\right)} .
$$

- Not feasible to compute posterior probability of each model since there are 2^{p} of them.

Stochastic Search Variable Selection

- Due to the intractability of calculating the posterior probabilities exactly, stochastic search is often used.
- Stochastic Search Variable Selection (SSVS) moves between multiple models and comes back to models which are more representative of the data.
- SSVS (George \& McCulloch, 1993, JASA) rely on MCMC to conduct this search.
- $\beta_{j} \sim\left(1-\gamma_{j}\right) N\left(0, v_{0 j}\right)+\gamma_{j} N\left(0, v_{1 j}\right), \gamma_{j} \stackrel{i n d .}{\sim} \operatorname{Ber}\left(w_{j}\right)$.
- $v_{0 j}$ small, $v_{1 j}$ "reasonably" big (away from 0).
- George \& McCulloch suggested taking $v_{0 j}=\tau_{j}^{2}, v_{1 j}=g_{j}^{2} \tau_{j}^{2}$, g_{j} big, τ_{j}^{2} small. Choice of g_{j} and τ_{j} ?
- $\boldsymbol{\beta}=\left(\beta_{1}, \ldots, \beta_{p}\right)^{\prime}, \gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right)^{\prime}$.
- $\pi\left(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma^{2}\right)=\left[\prod_{j=1}^{p} \pi\left(\beta_{j} \mid \sigma^{2}, \gamma_{j}\right) \pi\left(\gamma_{j}\right)\right] \pi\left(\sigma^{2}\right)$.
- $\pi\left(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma^{2} \mid \boldsymbol{y}\right) \propto N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) \pi\left(\boldsymbol{\beta}, \boldsymbol{\gamma}, \sigma^{2}\right)$.

Updates in George and McCulloch, 1993 JASA

- Note that $\boldsymbol{\beta} \mid \boldsymbol{\gamma} \sim N(\mathbf{0}, \boldsymbol{D})$ where $\boldsymbol{D}=\operatorname{diag}\left(a_{1} \tau_{1}^{2}, \ldots, a_{p} \tau_{p}^{2}\right)$ where $a_{j}=1$ if $\gamma_{j}=0$ and $a_{j}=g_{j}^{2}$ if $\gamma_{j}=1$.
- Thus $\pi(\boldsymbol{\beta} \mid-) \propto N\left(\boldsymbol{y} \mid \boldsymbol{X} \boldsymbol{\beta}, \sigma^{2} \boldsymbol{I}\right) N(\boldsymbol{\beta} \mid \mathbf{0}, \boldsymbol{D})$
- $P\left(\gamma_{j}=1 \mid-\right)=h_{1} /\left(h_{1}+h_{2}\right)$, where $h_{1}=w_{j} N\left(\beta_{j} \mid 0, g^{2} \tau_{j}^{2}\right)$, $h_{2}=\left(1-w_{j}\right) N\left(\beta_{j} \mid 0, \tau_{j}^{2}\right)$
- If prior of $\sigma^{2} \sim \operatorname{IG}\left(a_{\sigma}, b_{\sigma}\right)$, then posterior of σ^{2} is also Inverse Gamma.
- If additionally w_{j} is assigned a $\operatorname{Beta}\left(a_{w_{j}}, b_{w_{j}}\right)$ prior, then $\pi\left(w_{j} \mid-\right) \propto w_{j}^{\gamma_{j}}\left(1-w_{j}\right)^{1-\gamma_{j}} \operatorname{Beta}\left(w_{j} \mid a_{w_{j}}, b_{w_{j}}\right)$. This is also a Beta distribution.

Inference from SSVS

- Huge advantage of Bayes is the ability to quantify uncertainty.
- Bayes allows estimation of marginal inclusion probabilities $P\left(\gamma_{j}=1 \mid \boldsymbol{y}, \boldsymbol{X}\right)$. It is the proportion of times MCMC iteration visits a model with j th variable included.
- It is an indication of how important a predictor is.
- One might employ selection of predictors by thresholding marginal inclusion probability at 0.5 .
- The above gives rise to the median probability model which enjoys predictive optimality properties.

Problems with SSVS

- MCMC runs for a large number of iterations and hops between different models. Posterior probability of a model is estimated by the proportion of times the model has been visited by the Markov chain.
- Suffers when there are high correlations between variables.
- Not useful if one wants to add a flat prior to the β_{j} 's.
- Often viewed as not scalable to really big p but use of GPUs \& other tricks helps.

More on SSVS

- SSVS is appealing for its ability to select variables.
- We will discuss its theoretical optimality properties later.
- A major drawback of the SSVS is the combinatorial search for big p. This is computationally cumbersome for big p.
- If a few predictors are highly correlated, SSVS tends to miss all of them.
- It is sometimes appealing computationally \& philosophically to relax assumption of exact zeros.
- That is sparsity can be introduced in a "weaker sense".
- " This view of sparsity may appeal to Bayesians who oppose testing point null hypotheses, and would rather shrink than select".
- Instead, we want coefficients corresponding to the noisy predictors are approximately zero while leaving signals alone.

Spike and Slab LASSO

- We have seen penalized optimization with convex and separable penalty functions.
- Some non-convex and non-separable penalties can have desirable properties, however convex optimization can't be used for them.
- A few examples are MCP penalty of Zhang (2010), SCAD penalty of Fan and Li (2001).
- These penalties have the ability to threshold (select) and, at the same time, diminish the well-known estimation bias of the LASSO.
- Any penalized likelihood estimator may be seen as a posterior mode under a prior $\pi(\boldsymbol{\beta} \mid \lambda)$, where $J(\boldsymbol{\beta})=\log (\pi(\boldsymbol{\beta} \mid \lambda))$.
- In particular, separable penalties stem from independent product priors.
- For the spike and slab prior

$$
\pi(\boldsymbol{\beta} \mid \gamma)=\prod_{j=1}^{p}\left[\gamma_{j} \psi_{1}\left(\beta_{j}\right)+\left(1-\gamma_{j}\right) \psi_{0}\left(\beta_{j}\right)\right], \gamma \sim \pi(\gamma)
$$

- Rockova (2015) deploys $\psi_{1}\left(\beta_{j}\right)=\frac{\lambda_{1}}{2} \exp \left(-\lambda_{1}\left|\beta_{j}\right|\right)$ and $\psi_{0}\left(\beta_{j}\right)=\frac{\lambda_{0}}{2} \exp \left(-\lambda_{0}\left|\beta_{j}\right|\right)$.
- Let $\gamma_{j} \sim \operatorname{Ber}(\theta)$, then $\pi(\boldsymbol{\beta} \mid \theta)=\prod_{j=1}^{p}\left[\theta \psi_{1}\left(\beta_{j}\right)+(1-\theta) \psi_{0}\left(\beta_{j}\right)\right]$
- When $\psi_{1}(\cdot)=\psi_{0}(\cdot)$, we get back the LASSO penalty.
- Letting $\lambda_{0} \rightarrow \infty$ and $\lambda_{1} \rightarrow 0$ gives back I_{0} penalty.
- Thus a continuum of non-convex penalties can be created between these two extremes.

Spike and Slab LASSO Contd.

- The spike and slab LASSO penalty $-\frac{\pi(\boldsymbol{\beta} \mid \theta)}{\pi(0) \theta)}$.
- This penalty is the sum of the LASSO penalty and a non convex penalty.
- Use EM algorithm coordinatewise to get the maximum.
- The parameter expanded version of the prior is easy to find, thus EM algorithm can be easily employed.

Bayes Factor

- Bayes factor is a popular technique for hypothesis testing in the Bayesian paradigm.
- Suppose \boldsymbol{y} is the data and we are to test hypotheses H_{1} vs. H_{2}.
- The Bayes factor $B_{12}=\frac{P\left(\boldsymbol{y} \mid H_{1}\right)}{P\left(\boldsymbol{y} \mid H_{2}\right)}$.
- Clearly, $\frac{P\left(H_{1} \mid \boldsymbol{y}\right)}{P\left(H_{2} \mid \boldsymbol{y}\right)}=\frac{P\left(\boldsymbol{y} \mid H_{1}\right) P\left(H_{1}\right)}{P\left(\boldsymbol{y} \mid H_{2}\right) P\left(H_{2}\right)}$.
- $P\left(\boldsymbol{y} \mid H_{k}\right), k=1,2$ is obtained by integrating over the parameter space

$$
P\left(\boldsymbol{y} \mid H_{k}\right)=\int P\left(\boldsymbol{y} \mid \boldsymbol{\theta}_{k}, H_{k}\right) \pi\left(\boldsymbol{\theta}_{k} \mid H_{k}\right) d \boldsymbol{\theta}_{k},
$$

$\boldsymbol{\theta}_{k}$ is the parameter corresponding to the hypothesis H_{k}.

Bayes Factor Contd..

- $3.2>B_{12}>1$: not more than a bare mention.
- $10>B_{12}>3.2$: substantial.
- $100>B_{12}>10$: strong.
- $B_{12}>$ 100: decisive.
- The cut-off, however, is context specific.

Bayes Factor Contd..

- For some models, Bayes factor has closed form.
- However, in many models, Bayes factor does not come in closed form.
- Never try to approximate the integral with the MCMC samples.
- Rather, a suggestion is to use the Laplace approximation of the integral.
- Otherwise, one can use Gaussian quadrature to evaluate the integral.

g-Prior

$$
y_{i} \sim N\left(\mu_{i}, 1 / \phi\right), \quad i=1, \ldots, n
$$

- $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{p}$ correspond to p columns each of length n.
- Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{p}\right) \in\{0,1\}^{p}$.
- $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)^{\prime}$ and \boldsymbol{X}_{γ} is an $n \times p_{\gamma}$ dimensional matrix that includes columns corresponding to $\gamma_{i}=1$.
- $\mathscr{M}_{\boldsymbol{\gamma}}: \boldsymbol{\mu}=\mathbf{1}_{n} \alpha+\boldsymbol{X}_{\gamma} \boldsymbol{\beta}_{\boldsymbol{\gamma}}$.
- $\boldsymbol{\beta}_{\boldsymbol{\gamma}}$ is p_{γ}-dimensional.
- $\boldsymbol{\Theta}_{\boldsymbol{\gamma}}=\left\{\boldsymbol{\beta}_{\boldsymbol{\gamma}}, \alpha, \phi\right\}$.
- g-prior was another class of approach that has surfaced long back due to its computational ease.
- Let ϕ be the precision parameter. The formulations of g-prior is

$$
\boldsymbol{\beta}_{\gamma} \left\lvert\, \phi \sim N\left(\mathbf{0}, \frac{g}{\phi}\left(\boldsymbol{X}_{\gamma}^{\prime} \boldsymbol{X}_{\gamma}\right)^{-1}\right)\right., \pi(\phi) \propto \frac{1}{\phi}
$$

- Let \mathscr{M}_{b} be any base model. Then

$$
B F\left[\mathscr{M}_{\gamma}: \mathscr{M}_{\zeta}\right]=\frac{B F\left[\mathscr{M}_{\gamma}: \mathscr{M}_{b}\right]}{B F\left[\mathscr{M}_{\zeta}: \mathscr{M}_{b}\right]}
$$

- The marginal likelihood is given by

$$
\pi\left(\boldsymbol{y} \mid \mathscr{M}_{\gamma}\right)=\frac{\Gamma((n-1) / 2)}{\sqrt{\pi}^{n-1} \sqrt{n}}\|\boldsymbol{y}-\overline{\boldsymbol{y}}\|^{-(n-1)} \frac{(1+g)^{\left(n-1-p_{\gamma}\right) / 2}}{\left[1+g\left(1-R_{\gamma}^{2}\right)\right]^{(n-1) / 2}}
$$

- When \mathscr{M}_{b} is the null model, denoted by \mathscr{M}_{N}

$$
B F\left[\mathscr{M}_{\gamma}: \mathscr{M}_{N}\right]=(1+g)^{\frac{n-p_{\gamma}-1}{2}}\left[1+g\left(1-R_{\gamma}^{2}\right)\right]^{-(n-1) / 2}
$$

- When \mathscr{M}_{b} is the full model, denoted by \mathscr{M}_{F}

$$
B F\left[\mathscr{M}_{\gamma}: \mathscr{M}_{F}\right]=(1+g)^{\frac{-n+p+1}{2}}\left[1+g \frac{\left(1-R_{F}^{2}\right)}{\left(1-R_{\gamma}^{2}\right)}\right]^{\left(n-p_{\gamma}-1\right) / 2} .
$$

- R_{γ}^{2} is the R^{2} statistics for the model \mathscr{M}_{γ}.
- How to choose g ? Can a fixed g be used?
- Barlett paradox and information paradox.

