
Penalized Optimization: Unsatisfactory in Predictive
Inference

Penalized optimization is unable to provide predictive
inference. Only provides point prediction.

Typical focus in many scientific applications is uncertainty
characterization.

Different choices of tuning parameters may affect inference
considerably.
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Bayesian Approach

If loss function corresponds to a likelihood & penalty to the
log prior (up to normalizing constants), then estimates
correspond to mode of a Bayesian posterior (MAP estimates).

Consider the linear regression model with known σ2 and with
prior

yi ∼ N(x ′iβ, σ
2), βj ∼ πβ.

The log posterior of β upto a constant is

− 1

2σ2
||y − Xβ||2 +

p∑
j=1

log(πβ(βj)
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Although such estimators correspond to the mode of a
Bayesian posterior, they are typically not viewed as Bayesian.

Bayes estimators β̂Bayes are defined as the value that
minimizes the Bayes risk.

Bayes risk is the expectation of a loss L(β̂,β) averaged over
the posterior of β.

For example, if we choose squared error loss, β̂ is the
posterior mean.

MAP is not a Bayes estimator for a reasonable choice of loss
function.

Also, we would like to utilize the whole posterior instead of
just using a point estimate.
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Bayesian Approach in High Dimensions

Bayesians choose a prior distribution π(β, σ2) and calculate
the posterior

π(β, σ2|y ,X ) =
π(β, σ2)N(y |Xβ, σ2I )∫

π(β, σ2)N(y |Xβ, σ2I )dβdσ2

When n >> p, π(β, σ2|y ,X ) ≈ N(β|β̂, I (β)−1), where I (β)
is the Fisher information matrix.

The above is called the Bernstain-Von Mises theorem or the
Bayesian central limit theorem.

This essentially means that when n >> p, prior does not have
much role in determining the posterior. In fact, the likelihood
swamps the prior and we essentially get equivalent results
from frequentist and Bayesian.

This rosy picture breaks down when p is large.

Prior has profound effect for large p and it is essential to
carefully design the prior.

Winter 2018



Prior Design

Priors should be designed in such a way that the posterior of
β concentrates around the “true” β0.

Prior should have sufficient information. Flat prior on β gives
inconsistencies.

Motivated by the idea of sparsity, one popular approach is to
impose sparsity on β through prior distributions.

Later we will see that designing prior on β can also be
governed by other considerations.
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Bayesian Variable Selection by Sparsity

One natural prior to consider is

βj
iid∼ π0δ0 + (1− π0)g .

One popular choice of g is N(0, c).
π0 is the prior probability of excluding a predictor.
δ0 is the degenerate distribution at 0.
Prior on the nonzero coefficients are given by g .
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More into Spike and Slab

Define the variable inclusion indicator by γj = I (βj 6= 0).

Therefore, γ1, ..., γp indicate which predictors are included in
the model, γ = (γ1, ..., γp)′ ∈ {0, 1}p.

Note that, depending on whether a variable is included or
excluded, the total number of candidate models is 2p.

A candidate model is represented by γ.

The size of this model pγ =
∑p

j=1 γj ,
pγ ∼ Binomial(p, 1− π0).

Thus the expected model size is p(1− π0).

Clearly, if we fix π0 and p is big, it gives a lot of prior
information on the model size.

π0 is an important parameter and generally assigned a beta
prior.

Winter 2018



Posterior Probability of γ

Let βγ = {βj : γj = 1, j = 1, ..., p}.
Marginal likelihood of the model γ is

L(γ|y ,X ) =

∫
N(y |X γβγ , σ

2I )π(βγ , σ
2)dβγdσ

2.

The posterior probability of model γ is given by

π(γ|y ,X ) =
L(γ|y ,X )π(γ)∑

γ∗ L(γ∗|y ,X )π(γ∗)
.

Not feasible to compute posterior probability of each model
since there are 2p of them.
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Stochastic Search Variable Selection

Due to the intractability of calculating the posterior
probabilities exactly, stochastic search is often used.

Stochastic Search Variable Selection (SSVS) moves between
multiple models and comes back to models which are more
representative of the data.

SSVS (George & McCulloch, 1993, JASA) rely on MCMC to
conduct this search.

βj ∼ (1− γj)N(0, v0j) + γjN(0, v1j), γj
ind .∼ Ber(wj).

v0j small, v1j “reasonably” big (away from 0).

George & McCulloch suggested taking v0j = τ2j , v1j = g2
j τ

2
j ,

gj big, τ2j small. Choice of gj and τj?

β = (β1, ..., βp)′, γ = (γ1, ..., γp)′.

π(β,γ, σ2) =
[∏p

j=1 π(βj |σ2, γj)π(γj)
]
π(σ2).

π(β,γ, σ2|y) ∝ N(y |Xβ, σ2I )π(β,γ, σ2).
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Updates in George and McCulloch, 1993 JASA

Note that β|γ ∼ N(0,D) where D = diag(a1τ
2
1 , ..., apτ

2
p )

where aj = 1 if γj = 0 and aj = g2
j if γj = 1.

Thus π(β|−) ∝ N(y |Xβ, σ2I )N(β|0,D)

P(γj = 1|−) = h1/(h1 + h2), where h1 = wjN(βj |0, g2τ2j ),

h2 = (1− wj)N(βj |0, τ2j )

If prior of σ2 ∼ IG (aσ, bσ), then posterior of σ2 is also Inverse
Gamma.

If additionally wj is assigned a Beta(awj , bwj ) prior, then

π(wj |−) ∝ w
γj
j (1− wj)

1−γjBeta(wj |awj , bwj ). This is also a
Beta distribution.
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Inference from SSVS

Huge advantage of Bayes is the ability to quantify uncertainty.

Bayes allows estimation of marginal inclusion probabilities
P(γj = 1|y ,X ). It is the proportion of times MCMC iteration
visits a model with jth variable included.

It is an indication of how important a predictor is.

One might employ selection of predictors by thresholding
marginal inclusion probability at 0.5.

The above gives rise to the median probability model which
enjoys predictive optimality properties.
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Problems with SSVS

MCMC runs for a large number of iterations and hops
between different models. Posterior probability of a model is
estimated by the proportion of times the model has been
visited by the Markov chain.

Suffers when there are high correlations between variables.

Not useful if one wants to add a flat prior to the βj ’s.

Often viewed as not scalable to really big p but use of GPUs
& other tricks helps.
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More on SSVS

SSVS is appealing for its ability to select variables.

We will discuss its theoretical optimality properties later.

A major drawback of the SSVS is the combinatorial search for
big p. This is computationally cumbersome for big p.

If a few predictors are highly correlated, SSVS tends to miss
all of them.

It is sometimes appealing computationally & philosophically
to relax assumption of exact zeros.

That is sparsity can be introduced in a “weaker sense”.

“ This view of sparsity may appeal to Bayesians who oppose
testing point null hypotheses, and would rather shrink than
select”.

Instead, we want coefficients corresponding to the noisy
predictors are approximately zero while leaving signals alone.
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Spike and Slab LASSO

We have seen penalized optimization with convex and
separable penalty functions.

Some non-convex and non-separable penalties can have
desirable properties, however convex optimization can’t be
used for them.

A few examples are MCP penalty of Zhang (2010), SCAD
penalty of Fan and Li (2001).

These penalties have the ability to threshold (select) and, at
the same time, diminish the well-known estimation bias of the
LASSO.

Any penalized likelihood estimator may be seen as a posterior
mode under a prior π(β|λ), where J(β) = log(π(β|λ)).

In particular, separable penalties stem from independent
product priors.
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Spike and Slab LASSO Contd.

For the spike and slab prior

π(β|γ) =
p∏

j=1
[γjψ1(βj) + (1− γj)ψ0(βj)], γ ∼ π(γ).

Rockova (2015) deploys ψ1(βj) = λ1
2 exp(−λ1|βj |) and

ψ0(βj) = λ0
2 exp(−λ0|βj |).

Let γj ∼ Ber(θ), then π(β|θ) =
p∏

j=1
[θψ1(βj) + (1− θ)ψ0(βj)]

When ψ1(·) = ψ0(·), we get back the LASSO penalty.

Letting λ0 →∞ and λ1 → 0 gives back l0 penalty.

Thus a continuum of non-convex penalties can be created
between these two extremes.
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Spike and Slab LASSO Contd.

The spike and slab LASSO penalty −π(β|θ)
π(0|θ) .

This penalty is the sum of the LASSO penalty and a non
convex penalty.

Use EM algorithm coordinatewise to get the maximum.

The parameter expanded version of the prior is easy to find,
thus EM algorithm can be easily employed.
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Bayes Factor

Bayes factor is a popular technique for hypothesis testing in
the Bayesian paradigm.

Suppose y is the data and we are to test hypotheses H1 vs.
H2.

The Bayes factor B12 = P(y |H1)
P(y |H2)

.

Clearly, P(H1|y)
P(H2|y) = P(y |H1)P(H1)

P(y |H2)P(H2)
.

P(y |Hk), k = 1, 2 is obtained by integrating over the
parameter space

P(y |Hk) =

∫
P(y |θk ,Hk)π(θk |Hk)dθk ,

θk is the parameter corresponding to the hypothesis Hk .
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Bayes Factor Contd..

3.2 > B12 > 1: not more than a bare mention.

10 > B12 > 3.2: substantial.

100 > B12 > 10: strong.

B12 > 100: decisive.

The cut-off, however, is context specific.
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Bayes Factor Contd..

For some models, Bayes factor has closed form.

However, in many models, Bayes factor does not come in
closed form.

Never try to approximate the integral with the MCMC
samples.

Rather, a suggestion is to use the Laplace approximation of
the integral.

Otherwise, one can use Gaussian quadrature to evaluate the
integral.
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g-Prior

yi ∼ N(µi , 1/φ), i = 1, ..., n.

x1, ..., xp correspond to p columns each of length n.

Let γ = (γ1, ..., γp) ∈ {0, 1}p.

µ = (µ1, ..., µn)′ and Xγ is an n× pγ dimensional matrix that
includes columns corresponding to γi = 1.

Mγ : µ = 1nα + Xγβγ .

βγ is pγ-dimensional.

Θγ = {βγ , α, φ}.
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g-Prior Contd..

g-prior was another class of approach that has surfaced long
back due to its computational ease.

Let φ be the precision parameter. The formulations of g-prior
is

βγ |φ ∼ N(0,
g

φ
(X ′γXγ)−1), π(φ) ∝ 1

φ

Let Mb be any base model. Then

BF [Mγ : Mζ] =
BF [Mγ : Mb]

BF [Mζ : Mb]

The marginal likelihood is given by

π(y |Mγ) =
Γ((n − 1)/2)
√
π
n−1√

n
||y − ȳ ||−(n−1) (1 + g)(n−1−pγ)/2

[1 + g(1− R2
γ)](n−1)/2

.
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g-Prior Contd..

When Mb is the null model, denoted by MN

BF [Mγ : MN ] = (1 + g)
n−pγ−1

2 [1 + g(1− R2
γ)]−(n−1)/2.

When Mb is the full model, denoted by MF

BF [Mγ : MF ] = (1 + g)
−n+p+1

2 [1 + g
(1− R2

F )

(1− R2
γ)

](n−pγ−1)/2.

R2
γ is the R2 statistics for the model Mγ .

How to choose g? Can a fixed g be used?

Barlett paradox and information paradox.
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