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Course Information

Lectures: MWF 12:00-1:05

Lecture notes or relevant study materials will be posted every
week.

The course will be graded on two homeworks and one end
term project.

Homeworks: 50% and End Term: 50%.

Students taking Satisfactory/Unsatisfactory are required to
submit all the homeworks and the final project.

There will be a 15 minutes presentation for the end term
project. I would encourage you to work on the end term
project from the early February.

Lectures will be delivered for 9 weeks. Last week is reserved
for the end term presentation.
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Overview

High dimensional regression with an emphasis on Bayesian
methodology

Penalized optimization

Ridge regression, lasso, elastic net, adaptive lasso, group lasso.

Bayesian high dimensional regression

Spike and slab prior, detailed discussion, problem with model
selection and computation, stochastic search variable
selection, issues.

Median probability model in connection with spike and slab
prior.

g-prior, two paradoxes, connection with model selection,
mixture of g-priors.

Bayesian compression and multivariate high dimensional
regression.
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Overview Cont.

Modeling nonparametric models and big data

Tree based methods: CART, Random Forest, BART.

Gaussian process models

Gaussian process models with big data

Predictive process, compactly supported correlation functions,
kernel convolutions.
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Regression Analysis: An old tool

Statistical regression is occupying the literature from early
19th century.

The entire strength of statistics comes from regression
analysis.

With the advancements in computation techniques and
various sources of data, regression analysis has been extended
to model various situations.

Our motto is to discuss techniques that makes us up to date
with the modern techniques in regression analysis.

In particular, we will discuss situations where the number of
predictors is large.

Such things typically occur in biomedical applications.

Winter 2018



Linear Regression: Formulation

y = β0 + β1x1 + · · ·+ βpxp + ε, ε ∼ N(0, σ2)

Different structures of ε can be accommodated.

We minimize sum of squared errors to estimate the regression
coefficients.
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Understanding Error

Sum of squared error is a representation of the error in the
OLS.

Sum of squared prediction error is the sum of variance and
square of bias.

Though we only care about the squared prediction error, it
becomes helpful to individually understand variance and
squared bias.
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Tradeoff between Bias and Variance

There is a tradeoff between bias and variance in the sense
that if model complexity increases, bias decreases, variance
increases.

It is always important to protect from under and over-fitting.

Important to hit the point with lowest prediction error.
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Gauss Markov Theorem

Gauss Markov theorem states that among all linear unbiased
estimates, OLS has the smallest error.

There can be some BIASED estimator which is able to provide
lower MSE.
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Shrinkage Estimation

Let OLS estimate is β̂j . What happens to the MSE if we use

an estimator β̃j =
β̂j

1+λ?

Initially looks like a crazy idea, but lets give it a shot.

In particular, can we achieve lower MSE than OLS?

Yes, we can. But the resulting estimator has to be biased.
Whatever we pay for bias is compensated by the variance.

λ that minimizes the error is λ = pσ2∑p
j=1 β̂

2
j

.

Note: As λ becomes big this estimator approaches to 0.
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Shrinkage Estimation

Charles Stein with his student James found that the estimator

β′j =

(
1− (p−2)σ2∑

β̂2
j

)
β̂j has less MSE when σ2 is known.

Stanley Sclove proposed to shrink the estimator close to zero

if we find negative value, i.e.

(
1− (p−2)σ2∑

β̂2
j

)+

β̂j .

If σ2 is unknown, he proposed taking β′j =

(
1− cRSS∑

β̂2
j

)+

β̂j ,

for some constant c .
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Shrinkage Estimation Contd..

Note that the F-statistic is given by F =
∑
β̂2
j /p

RSS/(n−p) .

Expressing Sclove estimator as β′j =
(

1− c(n−p)
pF

)+
β̂j , it

seems that if the F test statistic is greater than c(n − p)/p
then all estimators are set to zero.
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Shrinkage Estimation Contd...

The above estimation sets all elements to either zero or
nonzero.

Stepwise regression adds or subtracts new variables in the
regression if there is an improvement in terms of AIC or BIC.
AIC = n RSS +2 df, AIC = n RSS + log(n) df.

But this is not automated. Is there any method that
automates shrinkage?

What about the shrinkage parameter. Can we use it to
estimate stuff?
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Ridge Regression

In statistical literature, ridge regression was introduced from a
completely different perspective.

Remember, if X is the n × p matrix and y is the n × 1
responser vector, OLS estimator is given by the solution to the
equation X ′Xβ = X ′y .

Suppose X ′X does not have an inverse or the inverse is highly
unstable.

Can happen when n < p or when columns are highly
correlated.

One idea is to solve (X ′X + λI )β = X ′y , with small λ.
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Ridge Regression

For ridge regression β̂ = (X ′X + λI )−1X ′y .

Note that E (β̂) = (X ′X + λI )−1X ′Xβ 6= β.

Var(β̂) = σ2(X ′X + λI )−1X ′X (X ′X + λI )−1.

λ is the key parameter. How to choose λ?
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Generalized Cross Validation to Choose λ

k fold:
(i) Divide the data into ten (equal) parts, S1, ...,Sk .
(ii) Set λ on a grid, say λ ∈ {λ1, ..., λs}.
(iii) For every λj , use S−i1 to fit the model and Si1 to
calculate model fitting error for i1 = 1, ..., 10.
(iv) Find the average mean squared error.
(v) Choose that λj which minimizes this error.
(vi) In general, k = 10 is used.

leave one out:
(i) When n is small, generally leave one out cross validation is
preferred over the k fold.
(ii) Fit the model with n− 1 data points and validate with the
nth one.
(iii) Repeat it for all sample points to calculate the mean
squared error.
(iv) Choose λj that minimizes the error.
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More on Ridge Regression

Ridge regression will ensure that the coefficients decrease in
size.

In Ridge regression, one does not penalize the intercept as it
is in the same scale as the predictors.

Also predictors can be of vastly different scales. To ensure fair
shrinkage to all, generally predictors are standardized.

This also sets the intercept to zero.

R code to compute ridge regression is attached.

Winter 2018



Variable Selection

Variable selection means to select important variables which
are affecting the response under the regression model.

For example, there may be a subset of coefficients which are
identically zero. The corresponding predictors have no effect
on the regression.

For ridge regression the coefficients are zero only when
λ =∞.

Therefore ridge regression can’t select variables.

It is useful when a lot of coefficients are close to zero.

It also does not perform well when a lot of coefficients are
moderately large.

Some post-processing steps may be taken to select variables.
But is there any model based straightforward way to select
variables?
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Lasso

Lasso is an acronym for least absolute selection and shrinkage
operator.

It combines the good features of ridge regression with variable
selection.

It is competitive in terms of prediction error w.r.t ridge
regression.

Note that the formulation of ridge regression is

arg min
β

n∑
i=1

(yi − x ′iβ)2 + λ

p∑
j=1

|βj |2

Lasso replaces l2 penalty by the l1 penalty, i.e.

arg min
β

n∑
i=1

(yi − x ′iβ)2 + λ

p∑
j=1

|βj |
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Lasso Contd..

As λ increases less variables are included, might have higher
prediction error after certain λ.

The idea is to choose λ so as to have proper model fit as well
as variable selection.

λ is again chosen using generalized cross validation.

Code for lasso.

Great thing about lasso is its property of variable selection.
Why it happens to lasso and not to ridge?
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Insight into the Geometry of Lasso and Ridge

the ridge and lasso optimization can be written as the
minimization over β

||y − Xβ||2 subject to ||β||22 ≤ λ
||y − Xβ||2 subject to ||β||1 ≤ λ.

The above is equivalent to the optimization problems

(β − β̂OLS)′X ′X (β − β̂OLS) subject to ||β||22 ≤ λ
(β − β̂OLS)′X ′X (β − β̂OLS) subject to ||β||1 ≤ λ.

OLS corresponds to the unconstrained optimization.

The shapes of ridge and lasso are discussed in class.
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Elastic net: Motivation

Variable selection with lasso has two shortcomings.
(i) The number of variables selected is bounded by the total
number of samples in the dataset.
(ii) Lasso fails to perform group variable selection, i.e. if a
group of variables are correlated, lasso tends to select only one
of them.

Elastic net is motivated by the above two shortcomings.

You are throwing a net to catch multiple fishes together.

Theorem: Suppose xi = xj and J(β) is a strictly convex function.

Suppose β̂ is obtained by optimizing the objective function
||y − Xβ||2 + λJ(β). Then β̂i = β̂j .

Since elastic net penalty is strictly convex, elastic net achieves
group variable selection.
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Elastic Net

The elastic net forms a hybrid of the l1 and l2.

The l1 part of the penalty generates a sparse model.

The quadratic part of the penalty
(i) removes limitation on the number of selected variables;
(ii) encourages grouping effect.

X ∗(n+p)×p =
1√

(1 + λ2)

(
X√
λ2I

)
, y∗ = (y , 0)′,

γ =
λ1√

1 + λ2
,β∗ =

√
1 + λ2β.

The elastic net objective function can be written as

||y∗ − X ∗β∗||2 + γ||β∗||1.

Thus elastic net can select all p predictors.

Winter 2018



Connections Between Lasso, Elastic Net and Ridge

Naive elastic net is given by

β̂elastic = arg min ||y − Xβ||2 + λ1||β||2 + λ2||β||1

Elastic net penalty can be viewed as∑p
j=1

[
(1− α)|βj |+ α|βj |2

]
.

α = 0 gives lasso, α = 1 gives ridge.

Solution to the above elastic net penalty is known as the naive
elastic net. Unfortunately it does not perform well in practice,
until and unless the truth is either closely captured by an
ordinary lasso or an ordinary ridge regression.

The intuitive reason being double penalization.

Actual elastic net is scaled naive elastic net estimates,
β(enet) = (1 + λ2)β(naive enet).

Use R package elasticnet
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Adaptive Lasso

The adaptive lasso uses a weighted penalty of the form∑p
j=1 wj |βj | where wj = 1/|β̂j |ν , β̂j is the ordinary least

squares estimate and ν > 0.

The adaptive lasso yields consistent estimates of the
parameters while retaining the attractive properties of lasso.
Idea is to favor predictors with univariate strength, to avoid
spurious selection of noise predictors.

When p > n, can use univariate regression coefficients in
place of full least squares estimates.

In general, when the predictors are correlated it is a good
practice to use univariate regression coefficients.

Adaptive lasso recovers the correct model under milder
condition than lasso.

Computationally it does not add any extra significant burden
to lasso computation.
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Group Lasso

In some problems, the predictors belong to pre-defined groups.

In this situation it may be desirable to shrink and select the
members of a group together. The group lasso in one way to
achieve this.

Suppose p predictors are divided into m groups, with pj
number of predictors in group j , j = 1, ...,m;
p1 + · · ·+ pm = p.

X j matrix corresponding to the jth group of predictors.

βj is the vector coefficient corresponding to X j .

Group lasso minimizes

arg min
β∈Rp

||y − β01−
m∑
j=1

X jβj ||2 + λ

m∑
j=1

√
pj ||βj ||2


Use R package gglasso.
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Clustering in High Dimensions: Nonnegative Matrix
Factorization

Given a matrix Mp×n and a desired rank k << min(n, p), find
W p×k and Hk×n s.t. M ≈WH by solving an optimization
problem minW>0,H>0||M −WH ||2.

Why do this when SVD does a better job in approximating M .

If M = UΣV , then ||M −UkΣkV k || ≤ ||M −WH ||.
Reason to do NMF: For nonnegative data NMF approximation
provides better interpretation.
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NMF and K-Means Clustering

k-means clustering can be written as ||M −WH ||2.

Columns of H gives us the cluster membership indicators.

Look at the largest element in each column of H .

That sample is included in the corresponding cluster.

Sometimes to make it similar to the K-means, sparse NMF is
employed.
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