Assignment 1: AMS 268 (Due Date 2/9)

January 19, 2018

Consider the high dimensional linear regression model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p + \epsilon, \ \epsilon \sim N(0, \sigma^2)$$
(1)

Let $\boldsymbol{x} = (x_1, ..., x_p)' \sim N(0, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is a $p \times p$ positive definite matrix. Assume that we have observed a sample of size n, $(y_i, \boldsymbol{x}_i)_{i=1}^n$ and assume $\sigma^2 = 1$. Consider simulating data by taking various combinations of $(n, p, \boldsymbol{\Sigma}, \boldsymbol{\beta})$ as follows

- (a) n = 500, 400
- (b) p = 100, 300
- (c) $\boldsymbol{\Sigma} = \boldsymbol{I}, \boldsymbol{S}_{0.6},$

(d) (i) $\beta_1 = \cdots = \beta_5 = 3$, $\beta_j = 0$ for any other j; (ii) $\beta_1 = \cdots = \beta_5 = 5$, $\beta_6 = \cdots = \beta_{10} = -2$, $\beta_{11} = \cdots = \beta_{15} = 0.5$, $\beta_j = 0$ for any other j,

where $\boldsymbol{S}_{\rho,ii} = 1, \, \boldsymbol{S}_{\rho,ij} = \rho^{|i-j|}$ for $i \neq j$. Altogether they give rise to 16 different combinations.

- Simulate data for all 16 combinations described as above.
- Run Lasso and Ridge regression for all 16 combinations and compare the results.
- Run Bayesian models with spike and slab on β respectively for all 16 combinations. (Write your own code)
- Numerically obtain E(β_j|**y**) for the Bayesian model for all j. Discuss accuracy of the Bayesian models w.r.t a metric.

- Compare lasso and spike and slab prior as methods for selecting variables.
- Let L_j be the length of 95% posterior credible interval for the *j*th predictor. Let $M_{zero} = mean(L_j : \beta_j^0 \neq 0)$ and $M_{zero} = mean(L_j : \beta_j^0 = 0)$ where β_j^0 is the true value of β_j . Calculate M_{zero} and $M_{nonzero}$ for the spike and slab prior.
- Take a particular combination n = 500, p = 100, $S_{0.6}$ and (i), out of the 16 combinations. Simulate 50 additional responses and predictors $(y_{pred,i}, \boldsymbol{x}_{pred,i})_{i=1}^{50}$ for this combination with (1). Draw 1000 samples from the posterior predictive distribution $\pi(y|y_1, ..., y_n, \boldsymbol{x}_{pred,i}), \forall i = 1, ..., 50$ for the spike and slab prior. Calculate posterior predictive mean $y_{est,i}$ at every $\boldsymbol{x}_{pred,i}$. Calculate MSPE $= \frac{1}{50} \sum_{i=1}^{50} (y_{pred,i} y_{est,i})^2$.