Assignment 2: AMS 268 (Due Date 2/21)

February 9, 2018

1. Consider the high dimensional linear regression model

$$
\begin{equation*}
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{p} x_{p}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{p}\right)^{\prime} \sim N(0, \boldsymbol{\Sigma})$, where $\boldsymbol{\Sigma}$ is a $p \times p$ positive definite matrix. Assume that we have observed a sample of size $n,\left(y_{i}, \boldsymbol{x}_{i}\right)_{i=1}^{n}$ and assume $\sigma^{2}=1$. Consider simulating data by taking various combinations of $(n, p, \boldsymbol{\Sigma}, \boldsymbol{\beta})$ as follows
(a) $n=50,200$
(b) $p=20$
(c) $\boldsymbol{\Sigma}=\boldsymbol{S}_{0.6}$,
(d) $\beta_{1}=\cdots=\beta_{5}=3, \beta_{j}=0$ for any other j where $\boldsymbol{S}_{\rho, i i}=1, \boldsymbol{S}_{\rho, i j}=\rho^{|i-j|}$ for $i \neq j$.

- Simulate data for both combinations described as above. You already have the code from Hw 1.
- Run Bayesian high dimensional model with g prior with a fixed g of your choice from the classnotes. (Write your own code)
- Test the hypotheses (i) $H_{0}: \beta_{1}=0$ (ii) $H_{0}: \beta_{10}=0$.

2. Simulate $x_{1 i}, x_{2 i}, \ldots, x_{p i} \sim N(0,1)$ for $i=1, \ldots, n$. Simulate the response from

$$
y_{i}=10 \sin \left(\pi x_{1 i} x_{2 i}\right)+20\left(x_{2 i}-0.5\right)_{+}^{2}+10 x_{4 i}+\epsilon_{i}, \epsilon_{i} \sim N\left(0, \sigma^{2}\right) .
$$

Consider, $\sigma^{2}=0.5$ and fit Random Forest and BART when (i) $p=200, n=200$ and (ii) $n=500, p=100$. Use the same number trees for fitting BART and Random Forest. Simulate an additional 100 responses.

- Provide MSPE, length and coverage of 95% predictive intervals for both BART and Random Forest.
- Show the analysis for the number of trees equal to 10 and 500 .
- Add noise from $N(0,0.1)$ and add the noise to predictors x_{1}, x_{2} and x_{9}. Repeat the analysis.

